ON THE ANALYTICITY OF THE BIVARIANT JLO COCYCLE

被引:1
作者
Benameur, Moulay-Tahar [1 ]
Carey, Alan L. [2 ]
机构
[1] Univ Paul Verlaine Metz, UMR 7122, F-57045 Metz, France
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES | 2009年 / 16卷
关键词
JLO; Noncommutative geometry; Families Index; NONCOMMUTATIVE GEOMETRY; CHERN CHARACTER; DIRAC OPERATORS; INDEX THEORY; FAMILIES;
D O I
10.3934/era.2009.16.37
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this note is to outline a proof that, for any l >= 0, the JLO bivariant cocycle associated with a family of Dirac type operators along a smooth. bration M -> B over the pair of algebras (C-infinity(M), C-infinity(B)), is entire when we endow C-infinity(M) with the Cl+1 topology and C-infinity(B) with the C-l topology. As a corollary, we deduce that this cocycle is analytic when we consider the Frechet smooth topologies on C-infinity(M) and C-infinity(B).
引用
收藏
页码:37 / 43
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]   INDEX OF ELLIPTIC OPERATORS .4. [J].
ATIYAH, MF ;
SINGER, IM .
ANNALS OF MATHEMATICS, 1971, 93 (01) :119-&
[3]   Index Theory and Non-Commutative Geometry II. Dirac Operators and Index Bundles [J].
Benameur, Moulay-Tahar ;
Heitsch, James L. .
JOURNAL OF K-THEORY, 2008, 1 (02) :305-356
[4]   Index theory and non-commutative geometry I. Higher families index theory-corrigendum [J].
Benameur, Moulay-Tahar ;
Heitsch, James L. .
K-THEORY, 2005, 36 (3-4) :397-402
[5]   Index theory and non-commutative geometry - I. Higher families index theory [J].
Benameur, MT ;
Heitsch, JL .
K-THEORY, 2004, 33 (02) :151-183
[6]  
BENAMEUR MT, FAMILY SPECTRAL FLOW
[7]  
Berline N., 2004, Heat kernels and Dirac operators. Grundlehren Text Editions
[8]   THE ANALYSIS OF ELLIPTIC FAMILIES .2. DIRAC OPERATORS, ETA-INVARIANTS, AND THE HOLONOMY THEOREM [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (01) :103-163
[9]   ON THE CHERN CHARACTER OF A THETA-SUMMABLE FREDHOLM MODULE [J].
GETZLER, E ;
SZENES, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (02) :343-357
[10]   Spectral triples for pseudomanifolds with isolated singularity [J].
Lescure, JM .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (04) :593-623