Impact of grid partitioning algorithms on combined distributed AC optimal power flow and parallel dynamic power grid simulation

被引:3
作者
Kyesswa, Michael [1 ]
Murray, Alexander [1 ]
Schmurr, Philipp [1 ]
Cakmak, Hueseyin [1 ]
Kuehnapfel, Uwe [1 ]
Hagenmeyer, Veit [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
关键词
Newton method; optimisation; load flow; IEEE standards; power grids; graph theory; pattern clustering; parallel algorithms; power system simulation; computational complexity; optimal grid partitioning strategy; spectral clustering; power system problems; computational performance; partitioned OPF-problem; augmented Lagrangian based alternating direction inexact Newton method; partitioned dynamic simulation problem; partitioned systems; parallel algorithm; distributed algorithms; AC OPF problem; grid partitioning algorithms; combined distributed AC optimal power flow; parallel dynamic power grid simulation; distributed computing; power grid simulation algorithms; power grid partitionings; parallel computing; Karlsruhe fast flow partitioner; KaFFPa; METIS; IEEE standard benchmark test networks; IMPLEMENTATION;
D O I
10.1049/iet-gtd.2020.1393
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The complexity of most power grid simulation algorithms scales with the network size, which corresponds to the number of buses and branches in the grid. Parallel and distributed computing is one approach that can be used to achieve improved scalability. However, the efficiency of these algorithms requires an optimal grid partitioning strategy. To obtain the requisite power grid partitionings, the authors first apply several graph theory based partitioning algorithms, such as the Karlsruhe fast flow partitioner (KaFFPa), spectral clustering, and METIS. The goal of this study is an examination and evaluation of the impact of grid partitioning on power system problems. To this end, the computational performance of AC optimal power flow (OPF) and dynamic power grid simulation are tested. The partitioned OPF-problem is solved using the augmented Lagrangian based alternating direction inexact Newton method, whose solution is the basis for the initialisation step in the partitioned dynamic simulation problem. The computational performance of the partitioned systems in the implemented parallel and distributed algorithms is tested using various IEEE standard benchmark test networks. KaFFPa not only outperforms other partitioning algorithms for the AC OPF problem, but also for dynamic power grid simulation with respect to computational speed and scalability.
引用
收藏
页码:6133 / 6141
页数:9
相关论文
共 40 条
  • [11] Engelmann A., DECOMPOSITION NONCOV
  • [12] Distributed AC Optimal Power Flow using ALADIN
    Engelmann, Alexander
    Muhlpfordt, Tillmann
    Jiang, Yuning
    Houska, Boris
    Faulwasser, Timm
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 5536 - 5541
  • [13] Optimal power flow: A bibliographic survey II Non-deterministic and hybrid methods
    Stephen Frank
    Ingrida Steponavice
    Steffen Rebennack
    [J]. Rebennack, S. (srebenna@mines.edu), 1600, Springer Verlag (03): : 259 - 289
  • [14] Optimal power flow: A bibliographic survey I Formulations and deterministic methods
    Frank S.
    Steponavice I.
    Rebennack S.
    [J]. Energy Systems, 2012, 3 (3) : 221 - 258
  • [15] Intelligent Partitioning in Distributed Optimization of Electric Power Systems
    Guo, Junyao
    Hug, Gabriela
    Tonguz, Ozan K.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (03) : 1249 - 1258
  • [16] Hagenmeyer, 2020, 2020 IEEE ACM 24 INT
  • [17] Hagenmeyer V, 2018, 10 S CONTR POW EN SY
  • [18] Holtgrewe M., 2010, 2010 IEEE INT S PAR
  • [19] Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem
    Hou, LJ
    Bose, A
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (03) : 1053 - 1059
  • [20] AN AUGMENTED LAGRANGIAN BASED ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION
    Houska, Boris
    Frasch, Janick
    Diehl, Moritz
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 1101 - 1127