TAKENS-BOGDANOV NUMERICAL ANALYSIS IN PREDATOR-PREY MODEL WITH DELAY

被引:0
作者
Mabonzo, V. D. [1 ]
Okandze, R. Eyelangoli [1 ]
Langa, F. D. [2 ]
机构
[1] Univ Marien Ngouabi, Ecole Normale Super, Brazzaville, Rep Congo
[2] Univ Marien Ngouabi, Fac Sci, Brazzaville, Rep Congo
来源
MATEMATICKI VESNIK | 2019年 / 71卷 / 04期
关键词
Bogdanov-Takens bifurcation; prey-predator model with delay; delay systems; Newton iteration; BIFURCATIONS; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the Bogdanov-Takens point in the case of a Predator-Prey model with delay.
引用
收藏
页码:304 / 315
页数:12
相关论文
共 13 条
[1]  
Engelborghs K., 2001, PHYSICA D, V159, P215
[2]  
Giannakopoulos F., 2002, ACM T MATH SOFTWARE, V28, P1
[3]  
Gustavo R., 2008, REV UNION MAT ARGENT, V49, P1
[4]  
Hale JK., 1991, Dynamics and Bifurcations, DOI DOI 10.1007/978-1-4612-4342-7
[5]  
Han G. J., 1998, COMM KOREAN MATHS SO, V3, P643
[6]   Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback [J].
Jiang, Weihua ;
Yuan, Yuan .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (02) :149-161
[7]  
Kuznetsov Y. A., 2004, ELEMENTS APPL BIFURC, P77
[8]   Bifurcations in predator-prey systems with nonmonotonic functional response [J].
Liu, ZH ;
Yuan, R .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (01) :187-205
[9]   Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations [J].
Luzyanina, T ;
Roose, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :379-392
[10]  
Ruan SG, 2000, SIAM J APPL MATH, V61, P1445