Computing Quasi-Conformal Folds

被引:9
作者
Qiu, Di [1 ]
Lam, Ka-Chun [2 ]
Lui, Lok-Ming [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
关键词
Beltrami equation; quasi-conformal geometry; mathematical origami; fold modeling; MAPS;
D O I
10.1137/18M1220042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computing surface folding maps has numerous applications ranging from computer graphics to material design. In this work we propose a novel way of computing surface folding maps via solving a linear PDE. This framework is a generalization of the existing computational quasi-conformal geometry and allows precise control of the geometry of folding. This property comes from a crucial quantity that occurs as the coefficient of the equation, namely, the alternating Beltrami coefficient. This approach also enables us to solve an inverse problem of parametrizing the folded surface given only partial data with known folding topology. Various interesting applications such as fold sculpting on 3 dimensional models, study of Miura-ori patterns, and self-occlusion reasoning are demonstrated to show the effectiveness of our method.
引用
收藏
页码:1392 / 1424
页数:33
相关论文
共 25 条
[1]  
[Anonymous], 2010, LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-642-15558-1
[2]   PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing [J].
Barnes, Connelly ;
Shechtman, Eli ;
Finkelstein, Adam ;
Goldman, Dan B. .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[3]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[4]   FLASH: Fast Landmark Aligned Spherical Harmonic Parameterization for Genus-0 Closed Brain Surfaces [J].
Choi, Pui Tung ;
Lam, Ka Chun ;
Lui, Lok Ming .
SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (01) :67-94
[5]   Solving monotone inclusions via compositions of nonexpansive averaged operators [J].
Combettes, PL .
OPTIMIZATION, 2004, 53 (5-6) :475-504
[6]  
Daisy Maxime, 2013, SIGGRAPH ASIA 2013 T, P1
[7]  
DEMAINE E. D., LIPICS LEIBNIZ INT P, P34
[8]   Intrinsic parameterizations of surface meshes [J].
Desbrun, M ;
Meyer, M ;
Alliez, P .
COMPUTER GRAPHICS FORUM, 2002, 21 (03) :209-+
[9]  
Dudte LH, 2016, NAT MATER, V15, P583, DOI [10.1038/nmat4540, 10.1038/NMAT4540]
[10]   Genus zero surface conformal mapping and its application to brain surface mapping [J].
Gu, XF ;
Wang, YL ;
Chan, TF ;
Thompson, PA ;
Yau, ST .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (08) :949-958