Group gradings on matrix algebras

被引:76
作者
Bahturin, YA
Zaicev, MV
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1A 5K9, Canada
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119899, Russia
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2002年 / 45卷 / 04期
关键词
D O I
10.4153/CMB-2002-051-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Phi be an algebraically closed field of characteristic zero, G a finite, not necessarily abelian, group. Given a G-grading on the full matrix algebra A = M-n(Phi), we decompose A as the tensor product of graded subalgebras A = B circle times C, B congruent to M-p (Phi) being a graded division algebra, while the grading of C congruent to M-q(Phi) is determined by that of the vector space Phi". Now the grading of A is recovered from those of A and B using a canonical "induction" procedure.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 14 条
[1]   Group gradings on associative algebras [J].
Bahturin, YA ;
Sehgal, SK ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 2001, 241 (02) :677-698
[2]  
Curtis C. W., 1962, Representation theory of finite groups and associative algebras, VXI
[3]   Group gradings on full matrix rings [J].
Dascalescu, S ;
Ion, B ;
Nastasescu, C ;
Montes, JR .
JOURNAL OF ALGEBRA, 1999, 220 (02) :709-728
[4]   Gradings on octonions [J].
Elduque, A .
JOURNAL OF ALGEBRA, 1998, 207 (01) :342-354
[5]   On Lie gradings III.: Gradings of the real forms of classical Lie algebras [J].
Havlícek, M ;
Patera, J ;
Pelantová, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 314 (1-3) :1-47
[6]   Correspondences between valued division algebras and graded division algebras [J].
Hwang, YS ;
Wadsworth, AR .
JOURNAL OF ALGEBRA, 1999, 220 (01) :73-114
[7]  
JACOBSON N, 1943, AM MATH SOC MATH SUR, V1
[8]  
Kantor I., 1972, T SEM VEKTOR TENZOR, V16, P407
[9]  
MONTGOMERY S, 1993, CBMS REG C SER MATH, V82
[10]  
Nastasescu C, 1982, GRADED RING THEORY, V28