3D Convolutional Neural Networks for Classification of Functional Connectomes

被引:40
作者
Khosla, Meenakshi [1 ]
Jamison, Keith [2 ,3 ]
Kuceyeski, Amy [2 ,3 ]
Sabuncu, Mert R. [1 ,4 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Weill Cornell Med Coll, Radiol, New York, NY USA
[3] Weill Cornell Med Coll, Brain & Mind Res Inst, New York, NY USA
[4] Cornell Univ, Nancy E & Peter C Meinig Sch Biomed Engn, Ithaca, NY 14850 USA
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018 | 2018年 / 11045卷
关键词
Functional connectivity; fMRI; Convolutional neural networks; Autism; ABIDE;
D O I
10.1007/978-3-030-00889-5_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Resting-state functional MRI (rs-fMRI) scans hold the potential to serve as a diagnostic or prognostic tool for a wide variety of conditions, such as autism, Alzheimer's disease, and stroke. While a growing number of studies have demonstrated the promise of machine learning algorithms for rs-fMRI based clinical or behavioral prediction, most prior models have been limited in their capacity to exploit the richness of the data. For example, classification techniques applied to rs-fMRI often rely on region-based summary statistics and/or linear models. In this work, we propose a novel volumetric Convolutional Neural Network (CNN) framework that takes advantage of the full-resolution 3D spatial structure of rs-fMRI data and fits non-linear predictive models. We showcase our approach on a challenging large-scale dataset (ABIDE, withN > 2, 000) and report state-of-the-art accuracy results on rs-fMRI-based discrimination of autism patients and healthy controls.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 23 条
  • [11] BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment
    Kawahara, Jeremy
    Brown, Colin J.
    Miller, Steven P.
    Booth, Brian G.
    Chau, Vann
    Grunau, Ruth E.
    Zwicker, Jill G.
    Hamarneh, Ghassan
    [J]. NEUROIMAGE, 2017, 146 : 1038 - 1049
  • [12] Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion
    Kong, Ru
    Li, Jingwei
    Orban, Csaba
    Sabuncu, Mert R.
    Liu, Hesheng
    Schaefer, Alexander
    Sun, Nanbo
    Zuo, Xi-Nian
    Holmes, Avram J.
    Eickhoff, Simon B.
    Yeo, B. T. Thomas
    [J]. CEREBRAL CORTEX, 2019, 29 (06) : 2533 - 2551
  • [13] Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO
  • [14] 2-8
  • [15] Mennes M., 2012, FRONT PSYCHIAT
  • [16] Reduction of motion-related artifacts in resting state fMRI using aCompCor
    Muschelli, John
    Nebel, Mary Beth
    Caffo, Brian S.
    Barber, Anita D.
    Pekar, James J.
    Mostofsky, Stewart H.
    [J]. NEUROIMAGE, 2014, 96 : 22 - 35
  • [17] Niepert M., 2016, P MACHINE LEARNING R
  • [18] The Default Mode Network in Autism
    Padmanabhan, Aarthi
    Lynch, Charles J.
    Schaer, Marie
    Menon, Vinod
    [J]. BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2017, 2 (06) : 476 - 486
  • [19] Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
    Plitt, Mark
    Barnes, Kelly Anne
    Martin, Alex
    [J]. NEUROIMAGE-CLINICAL, 2015, 7 : 359 - 366
  • [20] Methods to detect, characterize, and remove motion artifact in resting state fMRI
    Power, Jonathan D.
    Mitra, Anish
    Laumann, Timothy O.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Petersen, Steven E.
    [J]. NEUROIMAGE, 2014, 84 : 320 - 341