3D Convolutional Neural Networks for Classification of Functional Connectomes

被引:43
作者
Khosla, Meenakshi [1 ]
Jamison, Keith [2 ,3 ]
Kuceyeski, Amy [2 ,3 ]
Sabuncu, Mert R. [1 ,4 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
[2] Weill Cornell Med Coll, Radiol, New York, NY USA
[3] Weill Cornell Med Coll, Brain & Mind Res Inst, New York, NY USA
[4] Cornell Univ, Nancy E & Peter C Meinig Sch Biomed Engn, Ithaca, NY 14850 USA
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018 | 2018年 / 11045卷
关键词
Functional connectivity; fMRI; Convolutional neural networks; Autism; ABIDE;
D O I
10.1007/978-3-030-00889-5_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Resting-state functional MRI (rs-fMRI) scans hold the potential to serve as a diagnostic or prognostic tool for a wide variety of conditions, such as autism, Alzheimer's disease, and stroke. While a growing number of studies have demonstrated the promise of machine learning algorithms for rs-fMRI based clinical or behavioral prediction, most prior models have been limited in their capacity to exploit the richness of the data. For example, classification techniques applied to rs-fMRI often rely on region-based summary statistics and/or linear models. In this work, we propose a novel volumetric Convolutional Neural Network (CNN) framework that takes advantage of the full-resolution 3D spatial structure of rs-fMRI data and fits non-linear predictive models. We showcase our approach on a challenging large-scale dataset (ABIDE, withN > 2, 000) and report state-of-the-art accuracy results on rs-fMRI-based discrimination of autism patients and healthy controls.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 23 条
[11]   BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment [J].
Kawahara, Jeremy ;
Brown, Colin J. ;
Miller, Steven P. ;
Booth, Brian G. ;
Chau, Vann ;
Grunau, Ruth E. ;
Zwicker, Jill G. ;
Hamarneh, Ghassan .
NEUROIMAGE, 2017, 146 :1038-1049
[12]   Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion [J].
Kong, Ru ;
Li, Jingwei ;
Orban, Csaba ;
Sabuncu, Mert R. ;
Liu, Hesheng ;
Schaefer, Alexander ;
Sun, Nanbo ;
Zuo, Xi-Nian ;
Holmes, Avram J. ;
Eickhoff, Simon B. ;
Yeo, B. T. Thomas .
CEREBRAL CORTEX, 2019, 29 (06) :2533-2551
[13]  
Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO
[14]  
2-8
[15]  
Mennes M., 2012, FRONT PSYCHIAT
[16]   Reduction of motion-related artifacts in resting state fMRI using aCompCor [J].
Muschelli, John ;
Nebel, Mary Beth ;
Caffo, Brian S. ;
Barber, Anita D. ;
Pekar, James J. ;
Mostofsky, Stewart H. .
NEUROIMAGE, 2014, 96 :22-35
[17]  
Niepert M., 2016, P MACHINE LEARNING R
[18]   The Default Mode Network in Autism [J].
Padmanabhan, Aarthi ;
Lynch, Charles J. ;
Schaer, Marie ;
Menon, Vinod .
BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2017, 2 (06) :476-486
[19]   Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards [J].
Plitt, Mark ;
Barnes, Kelly Anne ;
Martin, Alex .
NEUROIMAGE-CLINICAL, 2015, 7 :359-366
[20]   Methods to detect, characterize, and remove motion artifact in resting state fMRI [J].
Power, Jonathan D. ;
Mitra, Anish ;
Laumann, Timothy O. ;
Snyder, Abraham Z. ;
Schlaggar, Bradley L. ;
Petersen, Steven E. .
NEUROIMAGE, 2014, 84 :320-341