Gravitational potentials and forces in the Lattice Universe: a slab

被引:1
作者
Eingorn, Maxim [1 ]
O'Briant, Niah [1 ]
Arzu, Katie [1 ]
Brilenkov, Maxim [2 ]
Zhuk, Alexander [3 ]
机构
[1] North Carolina Cent Univ, Dept Math & Phys, 1801 Fayetteville St, Durham, NC 27707 USA
[2] Univ Oslo, Inst Theoret Astrophys, Postboks 1029, N-0315 Oslo, Norway
[3] Odessa II Mechnikov Natl Univ, Astron Observ, Dvoryanskaya St 2, UA-65082 Odessa, Ukraine
基金
美国国家科学基金会;
关键词
D O I
10.1140/epjp/s13360-021-01139-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effect of the slab topology TxRxR of the Universe on the form of gravitational potentials and forces created by point-like masses. We obtain two alternative forms of solutions: One is based on the Fourier series expansion of the delta function using the periodical property along the toroidal dimension, and another one is derived by direct summation of solutions of the Helmholtz equation for the source particle and all its images. The latter one takes the form of the sum of Yukawa-type potentials. We demonstrate that for the present Universe the latter solution is preferable for numerical calculations since it requires less terms of the series to achieve the necessary precision.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Planck 2015 results XVIII. Background geometry and topology of the Universe [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J-P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]   Planck 2013 results. XXVI. Background geometry and topology of the Universe [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Chiang, L. -Y. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Rosa, A. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[3]  
Aslanyan, JCAP, V06
[4]   The topology and size of the universe from CMB temperature and polarization data [J].
Aslanyan, Grigor ;
Manohar, Aneesh V. ;
Yadav, Amit P. S. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (08)
[5]   Constraining the topology of the Universe using the polarized cosmic microwave background maps [J].
Bielewicz, P. ;
Banday, A. J. ;
Gorski, K. M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (02) :1064-1072
[6]   Constraints on the topology of the Universe derived from the 7-yr WMAP data [J].
Bielewicz, P. ;
Banday, A. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (03) :2104-2110
[7]   The study of topology of the Universe using multipole vectors [J].
Bielewicz, P. ;
Riazuelo, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (02) :609-623
[8]  
Bielewicz P., 2012, CONSTRAINTS TOPOLOGY, P91
[9]   Lattice Universe: examples and problems [J].
Brilenkov, Maxim ;
Eingorn, Maxim ;
Zhuk, Alexander .
EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (05)
[10]   Duel of cosmological screening lengths [J].
Canay, Ezgi ;
Eingorn, Maxim .
PHYSICS OF THE DARK UNIVERSE, 2020, 29