Analytical model of the network topology and rigidity of calcium aluminosilicate glasses

被引:16
作者
Yang, Kai [1 ]
Hu, Yushu [1 ]
Li, Zhou [1 ]
Krishnan, N. M. Anoop [2 ,3 ]
Smedskjaer, Morten M. [4 ]
Hoover, Christian G. [5 ]
Mauro, John C. [6 ]
Sant, Gaurav [7 ,8 ,9 ]
Bauchy, Mathieu [1 ,9 ]
机构
[1] Univ Calif Los Angeles, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
[2] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi, India
[3] Indian Inst Technol Delhi, Dept Mat Sci & Engn, New Delhi, India
[4] Aalborg Univ, Dept Chem & Biosci, Aalborg, Denmark
[5] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA
[6] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[7] Univ Calif Los Angeles, Dept Civil & Environm Engn, Lab Chem Construct Mat LC2, Los Angeles, CA USA
[8] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA
[9] Univ Calif Los Angeles, Inst Carbon Management, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
calcium aluminosilicate; molecular dynamics; topological constraint theory; MOLECULAR-DYNAMICS SIMULATIONS; SILICATE-GLASSES; AL COORDINATION; NONCRYSTALLINE SOLIDS; STRUCTURAL-PROPERTIES; DISSOLUTION KINETICS; CONSTRAINT THEORY; YOUNGS MODULUS; RANGE ORDER; OXYGEN;
D O I
10.1111/jace.17781
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Topological constraint theory (TCT) has enabled the prediction of various properties of oxide glasses as a function of their composition and structure. However, the robust application of TCT relies on accurate knowledge of the network structure and topology. Here, based on classical molecular dynamics simulations, we derive a fully analytical model describing the topology of the calcium aluminosilicate [(CaO)(x)(Al2O3)(y)(SiO2)(1-)(x)(-)(y), CAS] ternary system. This model yields the state of rigidity (flexible, isostatic, or stressed-rigid) of CAS systems as a function of composition and temperature. These results reveal the existence of correlations between network topology and glass-forming ability. This study suggests that glass-forming ability is encoded in the network topology of the liquid state rather than that of the glassy state.
引用
收藏
页码:3947 / 3962
页数:16
相关论文
共 87 条
[41]   PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations [J].
Martinez, L. ;
Andrade, R. ;
Birgin, E. G. ;
Martinez, J. M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (13) :2157-2164
[42]  
Mauro J.C., 2019, Fundamentals of Inorganic Glasses, V3, DOI DOI 10.1016/B978-0-12-816225-5.00001-8
[43]   Decoding the glass genome [J].
Mauro, John C. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2018, 22 (02) :58-64
[44]   Accelerating the Design of Functional Glasses through Modeling [J].
Mauro, John C. ;
Tandia, Adama ;
Vargheese, K. Deenamma ;
Mauro, Yihong Z. ;
Smedskjaer, Morten M. .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4267-4277
[45]   Topological Model for the Viscosity of Multicomponent Glass-Forming Liquids [J].
Mauro, John C. ;
Ellison, Adam J. ;
Allan, Douglas C. ;
Smedskjaer, Morten M. .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2013, 4 (04) :408-413
[46]  
Mauro JC, 2011, AM CERAM SOC BULL, V90, P31
[47]   Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids [J].
Mauro, John C. ;
Gupta, Prabhat K. ;
Loucks, Roger J. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (23)
[48]   RAMAN STUDIES OF AL COORDINATION IN SILICA-RICH SODIUM ALUMINOSILICATE GLASSES AND SOME RELATED MINERALS [J].
MCKEOWN, DA ;
GALEENER, FL ;
BROWN, GE .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1984, 68 (2-3) :361-378
[49]  
MCMILLAN PF, 1992, AM MINERAL, V77, P898
[50]  
Micoulaut M, 2001, FUNDMAT RES, P143