Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage

被引:49
作者
Zahid, Zobia [1 ,2 ]
Khan, Muhammad Kashif Riaz [1 ,2 ]
Hameed, Amjad [1 ,2 ]
Akhtar, Muhammad [2 ,3 ]
Ditta, Allah [1 ,2 ]
Hassan, Hafiz Mumtaz [1 ,2 ]
Farid, Ghulam [3 ]
机构
[1] Nucl Inst Agr & Biol, Plant Breeding & Genet Div, Faisalabad, Pakistan
[2] Pakistan Inst Engn & Appl Sci Nilore, NIAB C, Islamabad, Pakistan
[3] Nucl Inst Agr & Biol, Soil & Environm Sci Div, Faisalabad, Pakistan
关键词
Gossypium; water stress; stress tolerance indices; root length; stomatal conductance; catalase; GOSSYPIUM-HIRSUTUM; MORPHOLOGICAL RESPONSES; PHYSIOLOGICAL TRAITS; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; LEAF SENESCENCE; WATER RELATIONS; PLANT-GROWTH; GRAIN-YIELD; STRESS;
D O I
10.3389/fpls.2021.627107
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cotton is an important fiber and cash crop. Extreme water scarceness affects the growth, quality, and productivity of cotton. Water shortage has threatened the future scenario for cotton growers, so it is imperative to devise a solution to this problem. In this research, we have tried to machinate a solution for it. 23 genotypes have been screened out against drought tolerance at the seedling stage by evaluating the morphological, physiological, and biochemical traits in a triplicate completely randomized design plot experiment with two water regimes [50 and 100% field capacity]. Genotypic differences for all the morphological and physiological traits revealed highly significant differences except transpiration rate (TR). Moreover, the interaction between genotype and water regime (G x W) was highly significant for root length (RL, 5.163), shoot length (SL, 11.751), excised leaf water loss (ELWL, 0.041), and stomatal conductance (SC, 7.406). A positively strong correlation was found in TR with relative water content (RWC; 0.510) and SC (0.584) and RWC with photosynthesis (0.452) under drought conditions. A negative correlation was found in SC with SL (-0.428) and photosynthesis (-0.446). Traits like RL, SL, SC, photosynthesis, proline, catalase, and malondialdehyde were visible indicators, which can differentiate drought-tolerant genotypes from the susceptible ones. A wide range of diversity was found in all the morpho-physiological traits with the cumulative variance of four principal components (PCs) 83.09% and three PCs 73.41% under normal and water-stressed conditions, respectively, as per the principal component analysis. Hence, selection criteria can be established on the aforementioned traits for the development of drought-tolerant cultivars. Moreover, it was found that out of 23 experimental varieties, NIAB-135, NIAB-512, and CIM-554 could be used to devise breeding strategies for improving drought tolerance in cotton.
引用
收藏
页数:20
相关论文
共 79 条
[1]   Integration of plant responses to environmentally activated phytohormonal signals [J].
Achard, P ;
Cheng, H ;
De Grauwe, L ;
Decat, J ;
Schoutteten, H ;
Moritz, T ;
Van Der Straeten, D ;
Peng, JR ;
Harberd, NP .
SCIENCE, 2006, 311 (5757) :91-94
[2]   BIOCHEMICAL CHANGES IN MAIZE SEEDLINGS EXPOSED TO DROUGHT STRESS CONDITIONS AT DIFFERENT NITROGEN LEVELS [J].
Ahmadi, Ali ;
Emam, Yahya ;
Pessarakli, Mohammad .
JOURNAL OF PLANT NUTRITION, 2010, 33 (04) :541-556
[3]   Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent [J].
Ainsworth, Elizabeth A. ;
Gillespie, Kelly M. .
NATURE PROTOCOLS, 2007, 2 (04) :875-877
[4]  
Amin H, 2014, ADVAN LIFE SCI, V1, P231
[5]  
[Anonymous], 2017, EC SURVEY
[6]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[7]  
Babar M, 2009, AFR J BIOTECHNOL, V8, P4802
[8]   GROWTH DYNAMICS OF THE COTTON PLANT DURING WATER-DEFICIT STRESS [J].
BALL, RA ;
OOSTERHUIS, DM ;
MAUROMOUSTAKOS, A .
AGRONOMY JOURNAL, 1994, 86 (05) :788-795
[9]  
Bașal H., 2006, Ege Universitesi Ziraat Fakultesi Dergisi, V43, P101
[10]   Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field [J].
Carmo-Silva, A. Elizabete ;
Gore, Michael A. ;
Andrade-Sanchez, Pedro ;
French, Andrew N. ;
Hunsaker, Doug J. ;
Salvucci, Michael E. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2012, 83 :1-11