On Universal Relatives of the Riemann Zeta-function

被引:0
|
作者
Niess, Markus
机构
[1] Kath. University Eichstatt-Ingolstadt, Munich
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2009年 / 44卷 / 05期
关键词
Riemann zeta-function; tangential approximation;
D O I
10.3103/S1068362309050057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Riemann zeta-function zeta has the following well-known properties: (M) It is meromorphic in C with a simple pole at z = 1 with residue 1. (SR) The symmetry relation zeta(z) = <(zeta<(z)over bar>)over bar> holds for z not equal 1. (FE) The following functinal equation holds: zeta(z)Gamma(z/2)pi(-z/2) = zeta(1 - z)Gamma((1 - z)/2)pi(-(1-z)/2). Moreover, zeta has a universality property due to Voronin (1975). We show that arbitrarily close approximations of the Riemann zeta-function that satisfy (M),(SR),(FE) may have a different universality property. Consequently, these approximations do not satisfy the Riemann hypothesis. Moreover, we investigate the set of all "Birkhoff-universal" functions satisfying (M),(SR),(FE).
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条