Self Supervision to Distillation for Long-Tailed Visual Recognition

被引:37
|
作者
Li, Tianhao [1 ]
Wang, Limin [1 ]
Wu, Gangshan [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
基金
中国国家自然科学基金;
关键词
SMOTE;
D O I
10.1109/ICCV48922.2021.00067
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively alleviate the imbalance issue, but might be a risk of over-fitting tail classes. The recent decoupling method overcomes over-fitting issues by using a multi-stage training scheme, yet, it is still incapable of capturing tail class information in the feature learning stage. In this paper, we show that soft label can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition. The intrinsic relation between classes embodied by soft labels turns out to be helpful for long-tailed recognition by transferring knowledge from head to tail classes. Specifically, we propose a conceptually simple yet particularly effective multi-stage training scheme, termed as Self Supervised to Distillation (SSD). This scheme is composed of two parts. First, we introduce a self-distillation framework for long-tailed recognition, which can mine the label relation automatically. Second, we present a new distillation label generation module guided by self-supervision. The distilled labels integrate information from both label and data domains that can model long-tailed distribution effectively. We conduct extensive experiments and our method achieves the state-of-the-art results on three long-tailed recognition benchmarks: ImageNet-LT, CIFAR100-LT and iNaturalist 2018. Our SSD outperforms the strong LWS baseline by from 2.7% to 4.5% on various datasets.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 50 条
  • [11] A dual progressive strategy for long-tailed visual recognition
    Hong Liang
    Guoqing Cao
    Mingwen Shao
    Qian Zhang
    Machine Vision and Applications, 2024, 35
  • [12] A dual progressive strategy for long-tailed visual recognition
    Liang, Hong
    Cao, Guoqing
    Shao, Mingwen
    Zhang, Qian
    MACHINE VISION AND APPLICATIONS, 2024, 35 (01)
  • [13] Nested Collaborative Learning for Long-Tailed Visual Recognition
    Li, Jun
    Tan, Zichang
    Wan, Jun
    Lei, Zhen
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6939 - 6948
  • [14] Probabilistic Contrastive Learning for Long-Tailed Visual Recognition
    Du, Chaoqun
    Wang, Yulin
    Song, Shiji
    Huang, Gao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 5890 - 5904
  • [15] Balanced Contrastive Learning for Long-Tailed Visual Recognition
    Zhu, Jianggang
    Wang, Zheng
    Chen, Jingjing
    Chen, Yi-Ping Phoebe
    Jiang, Yu-Gang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6898 - 6907
  • [16] Exploring the auxiliary learning for long-tailed visual recognition
    Zhang, Junjie
    Liu, Lingqiao
    Wang, Peng
    Zhang, Jian
    NEUROCOMPUTING, 2021, 449 : 303 - 314
  • [17] Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition
    Ju, Lie
    Wang, Xin
    Wang, Lin
    Liu, Tongliang
    Zhao, Xin
    Drummond, Tom
    Mahapatra, Dwarikanath
    Ge, Zongyuan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 : 3 - 12
  • [18] Inflated Episodic Memory with Region Self-Attention for Long-Tailed Visual Recognition
    Zhu, Linchao
    Yang, Yi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4343 - 4352
  • [19] Long-Tailed Visual Recognition via Self-Heterogeneous Integration with Knowledge Excavation
    Jin, Yan
    Li, Mengke
    Lu, Yang
    Cheung, Yiu-ming
    Wang, Hanzi
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 23695 - 23704
  • [20] Key Point Sensitive Loss for Long-Tailed Visual Recognition
    Li, Mengke
    Cheung, Yiu-Ming
    Hu, Zhikai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4812 - 4825