Unconstrained Salient Object Detection via Proposal Subset Optimization

被引:77
作者
Zhang, Jianming [1 ]
Sclaroff, Stan [1 ]
Lin, Zhe [2 ]
Shen, Xiaohui [2 ]
Price, Brian [2 ]
Mech, Radomir [2 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Adobe Res, San Jose, CA USA
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
关键词
D O I
10.1109/CVPR.2016.618
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We aim at detecting salient objects in unconstrained images. In unconstrained images, the number of salient objects (if any) varies from image to image, and is not given. We present a salient object detection system that directly outputs a compact set of detection windows, if any, for an input image. Our system leverages a Convolutional-Neural-Network model to generate location proposals of salient objects. Location proposals tend to be highly overlapping and noisy. Based on the Maximum a Posteriori principle, we propose a novel subset optimization framework to generate a compact set of detection windows out of noisy proposals. In experiments, we show that our subset optimization formulation greatly enhances the performance of our system, and our system attains 16-34% relative improvement in Average Precision compared with the state-of-the-art on three challenging salient object datasets.
引用
收藏
页码:5733 / 5742
页数:10
相关论文
共 55 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Measuring the Objectness of Image Windows [J].
Alexe, Bogdan ;
Deselaers, Thomas ;
Ferrari, Vittorio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2189-2202
[3]  
[Anonymous], 2014, arXiv
[4]  
[Anonymous], 2011, ICCV
[5]  
[Anonymous], The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
[6]  
[Anonymous], 2014, CVPR
[7]  
[Anonymous], CVPR
[8]  
[Anonymous], 2010, Advances in Neural Information Processing Systems
[9]  
[Anonymous], 2009, ICCV
[10]   Multiscale Combinatorial Grouping [J].
Arbelaez, Pablo ;
Pont-Tuset, Jordi ;
Barron, Jonathan T. ;
Marques, Ferran ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :328-335