Criterion for robustness of global asymptotic stability to external perturbations of linear time-varying systems

被引:4
作者
Vrabel, R. [1 ]
机构
[1] Slovak Univ Technol Bratislava, Inst Appl Informat Automat & Mechatron, Trnava, Slovakia
关键词
Linear time-varying system; perturbation; robust global asymptotic stability; logarithmic norm;
D O I
10.1080/03081079.2020.1870223
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we establish a new criterion for robustness of global asymptotic stability of zero solution of LTV system (x) over dot = A(t) x in the presence of external perturbations (disturbances). To prove the result, logarithmic norm will be used under which the stability becomes a topological notion depending on the chosen vector norm in the state-space R-n.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 27 条
[1]  
Afanasev VN, 1996, Mathematical Theory of Control Systems Design
[2]   Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities [J].
Boubellouta, A. ;
Zouari, F. ;
Boulkroune, A. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2019, 48 (03) :211-234
[3]  
Coddington E. A., 1955, Theory of Ordinary Differential Equations
[4]  
Coppel W.A., 1965, AM MATH MON
[5]  
Dekker K., 1984, STABILITY RUNGE KUTT
[6]  
Desoer C. A., 2009, FEEDBACK SYSTEMS INP
[7]   Robust exponential stability of T-S fuzzy delayed systems with nonlinear perturbations [J].
Ding, Xiuyong ;
Shu, Lan ;
Liu, Xiu .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2013, 42 (01) :99-110
[8]   Robust stability analysis of interval fractional-order plants by fractional-order controllers: an approach to reduce additional calculation [J].
Ghorbani, Majid .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2021, 50 (01) :1-25
[9]   Hybrid Dynamical Systems [J].
Goebel, Rafal ;
Sanfelice, Ricardo G. ;
Teel, Andrew R. .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (02) :28-93
[10]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2nd