A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds

被引:36
作者
Caminha, A. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-50455760 Fortaleza, Ceara, Brazil
关键词
Lorentz manifolds; spacelike hypersurfaces; constant mean curvature; scalar curvature;
D O I
10.1016/j.difgeo.2006.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper We use the standard formula for the Laplacian of the squared norm of the second fundamental form and the asymptotic maximum principle of H. Omori and S.T. Yau to classify complete CMC spacelike hypersurfaces of a Lorentz ambient space of nonnegative constant sectional curvature, under appropriate bounds on the scalar curvature. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:652 / 659
页数:8
相关论文
共 12 条
[1]  
Barbosa J. L., 1993, Mat. Contemp, V4, P27
[2]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[3]   Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap theorem [J].
Brasil, A ;
Colares, AG ;
Palmas, O .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (03) :847-866
[4]   On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds [J].
Caminha, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (07) :1144-1174
[5]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[6]  
Dajczer M., 1990, Submanifolds and Isometric Immersions
[7]   REMARKS ON EXISTENCE OF SPACELIKE HYPERSURFACES OF CONSTANT MEAN CURVATURE [J].
GODDARD, AJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) :489-495
[8]  
Hardy G., 1989, INEQUALITIES
[9]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351