PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS

被引:3
|
作者
Gutin, Gregory [1 ]
Majumdar, Diptapriyo [1 ]
Ordyniak, Sebastian [2 ]
Wahlstrom, Magnus [1 ]
机构
[1] Royal Holloway Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
parameterized complexity; kernelization; graph coloring; list coloring; BOUNDS; COMPLEXITY;
D O I
10.1137/20M1323369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Golovach, Paulusma, and Song [Inform. and Comput., 237 (2014), pp. 204-214] asked to determine the parameterized complexity of the following problems parameterized by k: 1. Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v is an element of V (G), decide whether G has a proper list coloring. 2. Given a graph G, a clique modulator D of size k for G, and a pre-coloring \lambda P : X \rightarrow Q for X \subseteq V (G), decide whether \lambda P can be extended to a proper coloring of G using only colors from Q. For problem 1 we design an \scrO \ast (2k)- time randomized algorithm and for problem 2 we obtain a kernel with at most 3k vertices. Banik et al. [in Proceedings of IWOCA 2019, Springer, Berlin, 2019, pp. 61-69] proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n k colors for every v \in V (G), decide whether there is a proper list coloring for G. We obtain a kernel with \scrO (k2) vertices and colors and a compression to a variation of the problem with \scrO (k) vertices and \scrO (k2) colors.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 50 条
  • [41] Lower bounds for the happy coloring problems
    Bliznets, Ivan
    Sagunov, Danil
    THEORETICAL COMPUTER SCIENCE, 2020, 838 (838) : 94 - 110
  • [42] Fine-grained parameterized complexity analysis of graph coloring problems
    Jaffke, Lars
    Jansen, Bart M. P.
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 33 - 46
  • [43] On a list coloring conjecture of Reed
    Bohman, T
    Holzman, R
    JOURNAL OF GRAPH THEORY, 2002, 41 (02) : 106 - 109
  • [44] Sum List Coloring Graphs
    Adam Berliner
    Ulrike Bostelmann
    Richard A. Brualdi
    Louis Deaett
    Graphs and Combinatorics, 2006, 22 : 173 - 183
  • [45] Parameterized Complexity of Synchronization and Road Coloring
    Vorel, Vojtech
    Roman, Adam
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01) : 283 - 305
  • [46] Equitable list coloring of graphs
    Wang, WF
    Lih, KW
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (04): : 747 - 759
  • [47] Sum list coloring graphs
    Berliner, Adam
    Bostelmann, Ulrike
    Brualdi, Richard A.
    Deaett, Louis
    GRAPHS AND COMBINATORICS, 2006, 22 (02) : 173 - 183
  • [48] List coloring Halin graphs
    Wang, WF
    Lih, KW
    ARS COMBINATORIA, 2005, 77 : 53 - 63
  • [49] PARAMETERIZED COMPLEXITY OF CONFLICT-FREE GRAPH COLORING
    Bodlaender, Hans L.
    Kolay, Sudeshna
    Pieterse, Astrid
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2003 - 2038
  • [50] List coloring based algorithm for the Futoshiki puzzle
    Sen, Banu Baklan
    Diner, Oznur Yasar
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2024, 14 (04): : 294 - 307