PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS

被引:3
|
作者
Gutin, Gregory [1 ]
Majumdar, Diptapriyo [1 ]
Ordyniak, Sebastian [2 ]
Wahlstrom, Magnus [1 ]
机构
[1] Royal Holloway Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
parameterized complexity; kernelization; graph coloring; list coloring; BOUNDS; COMPLEXITY;
D O I
10.1137/20M1323369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Golovach, Paulusma, and Song [Inform. and Comput., 237 (2014), pp. 204-214] asked to determine the parameterized complexity of the following problems parameterized by k: 1. Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v is an element of V (G), decide whether G has a proper list coloring. 2. Given a graph G, a clique modulator D of size k for G, and a pre-coloring \lambda P : X \rightarrow Q for X \subseteq V (G), decide whether \lambda P can be extended to a proper coloring of G using only colors from Q. For problem 1 we design an \scrO \ast (2k)- time randomized algorithm and for problem 2 we obtain a kernel with at most 3k vertices. Banik et al. [in Proceedings of IWOCA 2019, Springer, Berlin, 2019, pp. 61-69] proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n k colors for every v \in V (G), decide whether there is a proper list coloring for G. We obtain a kernel with \scrO (k2) vertices and colors and a compression to a variation of the problem with \scrO (k) vertices and \scrO (k2) colors.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 50 条
  • [31] List coloring of Cartesian products of graphs
    Borowiecki, Mieczyslaw
    Jendrol, Stanislav
    Kral, Daniel
    Miskuf, Jozef
    DISCRETE MATHEMATICS, 2006, 306 (16) : 1955 - 1958
  • [32] ON LIST COLORING AND LIST HOMOMORPHISM OF PERMUTATION AND INTERVAL GRAPHS
    Enright, Jessica
    Stewart, Lorna
    Tardos, Gabor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1675 - 1685
  • [33] Proportional choosability: A new list analogue of equitable coloring
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    Reiniger, Benjamin
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2371 - 2383
  • [34] A Generalization of Some Results on List Coloring and DP-Coloring
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1189 - 1201
  • [35] Exploring the complexity boundary between coloring and list-coloring
    Flavia Bonomo
    Guillermo Durán
    Javier Marenco
    Annals of Operations Research, 2009, 169 : 3 - 16
  • [36] Exploring the complexity boundary between coloring and list-coloring
    Bonomo, Flavia
    Duran, Guillermo
    Marenco, Javier
    ANNALS OF OPERATIONS RESEARCH, 2009, 169 (01) : 3 - 16
  • [37] List coloring and diagonal coloring for plane graphs of diameter two
    Huang, Danjun
    Wang, Yiqiao
    Lv, Jing
    Yang, Yanping
    Wang, Weifan
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [38] Data reduction for graph coloring problems
    Jansen, Bart M. P.
    Kratsch, Stefan
    INFORMATION AND COMPUTATION, 2013, 231 : 70 - 88
  • [39] Faster Deterministic Distributed Coloring Through Recursive List Coloring
    Kuhn, Fabian
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1244 - 1259
  • [40] A Generalization of Some Results on List Coloring and DP-Coloring
    Keaitsuda Maneeruk Nakprasit
    Kittikorn Nakprasit
    Graphs and Combinatorics, 2020, 36 : 1189 - 1201