PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS

被引:3
|
作者
Gutin, Gregory [1 ]
Majumdar, Diptapriyo [1 ]
Ordyniak, Sebastian [2 ]
Wahlstrom, Magnus [1 ]
机构
[1] Royal Holloway Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
parameterized complexity; kernelization; graph coloring; list coloring; BOUNDS; COMPLEXITY;
D O I
10.1137/20M1323369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Golovach, Paulusma, and Song [Inform. and Comput., 237 (2014), pp. 204-214] asked to determine the parameterized complexity of the following problems parameterized by k: 1. Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v is an element of V (G), decide whether G has a proper list coloring. 2. Given a graph G, a clique modulator D of size k for G, and a pre-coloring \lambda P : X \rightarrow Q for X \subseteq V (G), decide whether \lambda P can be extended to a proper coloring of G using only colors from Q. For problem 1 we design an \scrO \ast (2k)- time randomized algorithm and for problem 2 we obtain a kernel with at most 3k vertices. Banik et al. [in Proceedings of IWOCA 2019, Springer, Berlin, 2019, pp. 61-69] proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n k colors for every v \in V (G), decide whether there is a proper list coloring for G. We obtain a kernel with \scrO (k2) vertices and colors and a compression to a variation of the problem with \scrO (k) vertices and \scrO (k2) colors.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 50 条
  • [21] Some (in)tractable Parameterizations of Coloring and List-Coloring
    Arora, Pranav
    Banik, Aritra
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 126 - 139
  • [22] List coloring digraphs
    Bensmail, Julien
    Harutyunyan, Ararat
    Ngoc Khang Le
    JOURNAL OF GRAPH THEORY, 2018, 87 (04) : 492 - 508
  • [23] Parameterized Mixed Graph Coloring
    Peter Damaschke
    Journal of Combinatorial Optimization, 2019, 38 : 362 - 374
  • [24] Parameterized (Approximate) Defective Coloring
    Belmonte, Remy
    Lampis, Michael
    Mitsou, Valia
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [25] List coloring with requests
    Dvorak, Zdenek
    Norin, Sergey
    Postle, Luke
    JOURNAL OF GRAPH THEORY, 2019, 92 (03) : 191 - 206
  • [26] Parameterized Mixed Graph Coloring
    Damaschke, Peter
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 362 - 374
  • [27] Parameterized complexity of coloring problems: Treewidth versus vertex cover
    Fiala, Jiri
    Golovach, Petr A.
    Kratochvil, Jan
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (23) : 2513 - 2523
  • [28] Parameterized Complexity of Equitable Coloring
    Gomes, Guilherme de C. M.
    Lima, Carlos V. G. C.
    dos Santos, Vinicius F.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [29] List coloring in the absence of two subgraphs
    Golovach, Petr A.
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 123 - 130
  • [30] List Coloring in the Absence of a Linear Forest
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    ALGORITHMICA, 2015, 71 (01) : 21 - 35