PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS

被引:3
|
作者
Gutin, Gregory [1 ]
Majumdar, Diptapriyo [1 ]
Ordyniak, Sebastian [2 ]
Wahlstrom, Magnus [1 ]
机构
[1] Royal Holloway Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
parameterized complexity; kernelization; graph coloring; list coloring; BOUNDS; COMPLEXITY;
D O I
10.1137/20M1323369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Golovach, Paulusma, and Song [Inform. and Comput., 237 (2014), pp. 204-214] asked to determine the parameterized complexity of the following problems parameterized by k: 1. Given a graph G, a clique modulator D (a clique modulator is a set of vertices, whose removal results in a clique) of size k for G, and a list L(v) of colors for every v is an element of V (G), decide whether G has a proper list coloring. 2. Given a graph G, a clique modulator D of size k for G, and a pre-coloring \lambda P : X \rightarrow Q for X \subseteq V (G), decide whether \lambda P can be extended to a proper coloring of G using only colors from Q. For problem 1 we design an \scrO \ast (2k)- time randomized algorithm and for problem 2 we obtain a kernel with at most 3k vertices. Banik et al. [in Proceedings of IWOCA 2019, Springer, Berlin, 2019, pp. 61-69] proved the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph G, an integer k, and a list L(v) of exactly n k colors for every v \in V (G), decide whether there is a proper list coloring for G. We obtain a kernel with \scrO (k2) vertices and colors and a compression to a variation of the problem with \scrO (k) vertices and \scrO (k2) colors.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 50 条
  • [1] Parameterized Pre-Coloring Extension and List Coloring Problems
    Gutin, Gregory
    Majumdar, Diptapriyo
    Ordyniak, Sebastian
    Wahlstrom, Magnus
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [2] Incremental list coloring of graphs, parameterized by conservation
    Hartung, Sepp
    Niedermeier, Rolf
    THEORETICAL COMPUTER SCIENCE, 2013, 494 : 86 - 98
  • [3] Extension of a list coloring problem
    Wu, BD
    Zhang, L
    APPLIED MATHEMATICS LETTERS, 2006, 19 (02) : 135 - 139
  • [4] Incremental List Coloring of Graphs, Parameterized by Conservation
    Hartung, Sepp
    Niedermeier, Rolf
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 258 - 270
  • [5] Parameterized coloring problems on chordal graphs
    Marx, D
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 407 - 424
  • [6] Parameterized complexity of happy coloring problems
    Agrawal, Akanksha
    Aravind, N. R.
    Kalyanasundaram, Subrahmanyam
    Kare, Anjeneya Swami
    Lauri, Juho
    Misra, Neeldhara
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 58 - 81
  • [7] Between coloring and list-coloring: μ-coloring
    Bonomo, Flavia
    Cecowski Palacio, Mariano
    ARS COMBINATORIA, 2011, 99 : 383 - 398
  • [8] A Matrix Approach to List Coloring problems
    Xu, Meirong
    Zhao, Yige
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1081 - 1085
  • [9] Parameterized complexity of the list coloring reconfiguration problem with graph parameters
    Hatanaka, Tatsuhiko
    Ito, Takehiro
    Zhou, Xiao
    THEORETICAL COMPUTER SCIENCE, 2018, 739 : 65 - 79
  • [10] Parameterized maximum path coloring
    Lampis, Michael
    THEORETICAL COMPUTER SCIENCE, 2013, 511 : 42 - 53