A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere

被引:31
作者
Kaifler, Bernd [1 ]
Kaifler, Natalie [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
基金
欧盟地平线“2020”;
关键词
GRAVITY-WAVE ACTIVITY; WATER-VAPOR LIDAR; MESOSPHERIC TEMPERATURE; RAMAN LIDAR; AEROSOL; CLIMATOLOGY; DENSITY; NIGHT; WIND;
D O I
10.5194/amt-14-1715-2021
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Compact Rayleigh Autonomous Lidar (CORAL) is the first fully autonomous middle atmosphere lidar system to provide density and temperature profiles from 15 to approximately 90 km altitude. From October 2019 to October 2020, CORAL acquired temperature profiles on 243 out of the 365 nights (66 %) above Rio Grande, southern Argentina, a cadence which is 3-8 times larger as compared to conventional human-operated lidars. The result is an unprecedented data set with measurements on 2 out of 3 nights on average and high temporal (20 min) and vertical (900 m) resolution. The first studies using CORAL data have shown, for example, the evolution of a strong atmospheric gravity wave event and its impact on the stratospheric circulation. We describe the instrument and its novel software which enables automatic and unattended observations over periods of more than a year. A frequency-doubled diode-pumped pulsed Nd:YAG laser is used as the light source, and backscattered photons are detected using three elastic channels (532 nm wavelength) and one Raman channel (608 nm wavelength). Automatic tracking of the laser beam is realized by the implementation of the conical scan (conscan) method. The CORAL software detects blue sky conditions and makes the decision to start the instrument based on local meteorological measurements, detection of stars in all-sky images, and analysis of European Center for Medium-range Weather Forecasts Integrated Forecasting System data. After the instrument is up and running, the strength of the lidar return signal is used as additional information to assess sky conditions. Safety features in the software allow for the operation of the lidar even in marginal weather, which is a prerequisite to achieving the very high observation cadence.
引用
收藏
页码:1715 / 1732
页数:18
相关论文
共 41 条
[1]   Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E) [J].
Alexander, S. P. ;
Klekociuk, A. R. ;
Murphy, D. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[2]   LIDAR OBSERVATION OF CLOUD [J].
COLLIS, RTH .
SCIENCE, 1965, 149 (3687) :978-&
[3]   Rayleigh lidar observations of a mesospheric inversion layer during night and day [J].
Duck, TJ ;
Sipler, DP ;
Salah, JE ;
Meriwether, JW .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (18) :3597-3600
[4]   High-Altitude (0-100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) [J].
Eckermann, Stephen D. ;
Ma, Jun ;
Hoppel, Karl W. ;
Kuhl, David D. ;
Allen, Douglas R. ;
Doyle, James A. ;
Viner, Kevin C. ;
Ruston, Benjamin C. ;
Baker, Nancy L. ;
Swadley, Steven D. ;
Whitcomb, Timothy R. ;
Reynolds, Carolyn A. ;
Xu, Liang ;
Kaifler, N. ;
Kaifler, B. ;
Reid, Iain M. ;
Murphy, Damian J. ;
Love, Peter T. .
MONTHLY WEATHER REVIEW, 2018, 146 (08) :2639-2666
[5]   Comparing ECMWF high-resolution analyses with lidar temperature measurements in the middle atmosphere [J].
Ehard, Benedikt ;
Malardel, Sylvie ;
Doernbrack, Andreas ;
Kaifler, Bernd ;
Kaifler, Natalie ;
Wedi, Nils .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (712) :633-640
[6]   Horizontal propagation of large-amplitude mountain waves into the polar night jet [J].
Ehard, Benedikt ;
Kaifler, Bernd ;
Doernbrack, Andreas ;
Preusse, Peter ;
Eckermann, Stephen D. ;
Bramberger, Martina ;
Gisinger, Sonja ;
Kaifler, Natalie ;
Liley, Ben ;
Wagner, Johannes ;
Rapp, Markus .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (03) :1423-1436
[7]   The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation [J].
Engelmann, Ronny ;
Kanitz, Thomas ;
Baars, Holger ;
Heese, Birgit ;
Althausen, Dietrich ;
Skupin, Annett ;
Wandinger, Ulla ;
Komppula, Mika ;
Stachlewska, Iwona S. ;
Amiridis, Vassilis ;
Marinou, Eleni ;
Mattis, Ina ;
Linne, Holger ;
Ansmann, Albert .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (04) :1767-1784
[8]   Large-Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 2. Nonlinear Dynamics, Wave Breaking, and Instabilities [J].
Fritts, David C. ;
Wang, Ling ;
Taylor, Michael J. ;
Pautet, Pierre-Dominique ;
Criddle, Neal R. ;
Kaifler, Bernd ;
Eckermann, Stephen D. ;
Liley, Ben .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (17-18) :10006-10032
[9]   The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere [J].
Fritts, David C. ;
Smith, Ronald B. ;
Taylor, Michael J. ;
Doyle, James D. ;
Eckermann, Stephen D. ;
Doernbrack, Andreas ;
Rapp, Markus ;
Williams, Bifford P. ;
Pautet, P. -Dominique ;
Bossert, Katrina ;
Criddle, Neal R. ;
Reynolds, Carolyn A. ;
Reinecke, P. Alex ;
Uddstrom, Michael ;
Revell, Michael J. ;
Turner, Richard ;
Kaifler, Bernd ;
Wagner, Johannes S. ;
Mixa, Tyler ;
Kruse, Christopher G. ;
Nugent, Alison D. ;
Watson, Campbell D. ;
Gisinger, Sonja ;
Smith, Steven M. ;
Lieberman, Ruth S. ;
Laughman, Brian ;
Moore, James J. ;
Brown, William O. ;
Haggerty, Julie A. ;
Rockwell, Alison ;
Stossmeister, Gregory J. ;
Williams, Steven F. ;
Hernandez, Gonzalo ;
Murphy, Damian J. ;
Klekociuk, Andrew R. ;
Reid, Iain M. ;
Ma, Jun .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (03) :425-453
[10]  
Fujii T., 2005, LASER REMOTE SENSING