Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data

被引:95
作者
Feng, Siwen [1 ,2 ]
Zhao, Jianjun [1 ]
Liu, Tingting [3 ]
Zhang, Hongyan [1 ]
Zhang, Zhengxiang [1 ]
Guo, Xiaoyi [1 ]
机构
[1] Northeast Normal Univ, Sch Geog Sci, Changchun 130024, Peoples R China
[2] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[3] Univ Nebraska Lincoln, Natl Drought Mitigat Ctr, Lincoln, NE 68583 USA
基金
中国国家自然科学基金;
关键词
Crop type identification; machine learning; random forest (RF); Sentinel-2A; support vector machine (SVM); SPECTRAL REFLECTANCE; VEGETATION INDEXES; LANDSAT DATA; CLASSIFICATION; COVER; FEATURES; IMAGERY; SYSTEM;
D O I
10.1109/JSTARS.2019.2922469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the random forests method and the support vector machine in machine learning are explored and compared to the traditional statistical-based maximum likelihood method with 126 features from Sentinel-2A images. The spectral reflectance of 12 bands, 96 texture parameters, 7 vegetation indices, and 11 phenological parameters are successfully extracted from Sentinel-2A images in 2017. The classification result shows that the optimal combination of 13 features yields overall accuracies of traditional classification and machine learning classification of 88.96% and 98% respectively. Short-wave infrared information shows a significant effect on distinguishing rice, corn, and soybean. The water vapor band plays a significant role in distinguishing between corn and rice. In the multiclassification problem, the machine learning methods have robustness with the identification accuracy of greater than 95% for each crop type, whereas the traditional classification result shows imbalanced accuracies for different crops.
引用
收藏
页码:3295 / 3306
页数:12
相关论文
共 46 条
[1]   Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data [J].
Bannari, A. ;
PacheCo, A. ;
Staenz, K. ;
McNairn, H. ;
Omari, K. .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (04) :447-459
[3]   Optimisation of global grids for high-resolution remote sensing data [J].
Bauer-Marschallinger, Bernhard ;
Sabel, Daniel ;
Wagner, Wolfgang .
COMPUTERS & GEOSCIENCES, 2014, 72 :84-93
[4]   A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing [J].
Biradar, Chandrashekhar M. ;
Thenkabail, Prasad S. ;
Noojipady, Praveen ;
Li, Yuanjie ;
Dheeravath, Venkateswarlu ;
Turral, Hugh ;
Velpuri, Manohar ;
Gumma, Murali K. ;
Gangalakunta, Obi Reddy P. ;
Cai, Xueliang L. ;
Xiao, Xiangming ;
Schull, Mitchell A. ;
Alankara, Ranjith D. ;
Gunasinghe, Sarath ;
Mohideen, Sadir .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (02) :114-129
[5]   Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics [J].
Bolton, Douglas K. ;
Friedl, Mark A. .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 173 :74-84
[6]   New approaches to statistical learning theory [J].
Bousquet, O .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) :371-389
[7]  
Breiman L, 2001, J CLIN MICROBIOL, V2, P199, DOI DOI 10.1023/A:1017934522171
[8]   A multilevel context-based system for classification of very high spatial resolution images [J].
Bruzzone, Lorenzo ;
Carlin, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (09) :2587-2600
[9]   A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach [J].
Cai, Yaping ;
Guan, Kaiyu ;
Peng, Jian ;
Wang, Shaowen ;
Seifert, Christopher ;
Wardlow, Brian ;
Li, Zhan .
REMOTE SENSING OF ENVIRONMENT, 2018, 210 :35-47
[10]   Mapping croplands, cropping patterns, and crop types using MODIS time-series data [J].
Chen, Yaoliang ;
Lu, Dengsheng ;
Moran, Emilio ;
Batistella, Mateus ;
Dutra, Luciano Vieira ;
Sanches, Ieda Del'Arco ;
Bicudo da Silva, Ramon Felipe ;
Huang, Jingfeng ;
Barreto Luiz, Alfredo Jose ;
Falcao de Oliveira, Maria Antonia .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 69 :133-147