Determining soil carbon stock changes: Simple bulk density corrections fail

被引:318
作者
Lee, Juhwan [1 ]
Hopmans, Jan W. [2 ]
Rolston, Dennis E. [2 ]
Baer, Sara G. [3 ]
Six, Johan [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[3] So Illinois Univ, Dept Plant Biol, Ctr Ecol, Carbondale, IL 62901 USA
基金
美国安德鲁·梅隆基金会;
关键词
Soil carbon stocks; Soil organic matter; Bulk density; Equivalent soil mass; Tillage; Land use change; SPATIAL VARIABILITY; ORGANIC-CARBON; MATTER; MASS;
D O I
10.1016/j.agee.2009.07.006
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Several methods are used to correct total soil carbon data in response to land use or management changes inherently coupled with concomitant alteration to bulk density (BD). However a rigorous, evaluation of correction methods has not been conducted. We compared original, maximum, and minimum equivalent soil mass (ESM) corrections to the fixed depth (FD) method and direct C concentrations. In a simulation exercise of a tillage event that decreased BID without change in total C concentration to a depth of 0.3 m, the original and maximum ESM methods estimated changes in total C storage of -0.34 to 0.54 Mg C ha(-1), well within the range of field soil C variability. In contrast, the minimum ESM method estimated changes ranging from -1.19 to 1.01 Mg C ha(-1). In a field experiment on reduced and intensive tillage, soil C changes (0-0.18 m) were measured from May to August 2006. The maximum ESM method generally overestimated soil C changes by -0.16 to 0.60 Mg C ha(-1) and the minimum ESM method underestimated them by -2.67 to 0.23 Mg C ha(-1) compared to the original ESM method. Field-scale soil C changes (0-0.15 m) were also measured from August 2003 to June 2005 and decreased by an unrealistic 6.64 Mg C ha(-1) over the first 6 months after tillage when the FD method was used. In contrast, the effect of tillage on soil C could be reasonably estimated by directly comparing changes in C concentration. In a compacted agricultural soil, we found more errors in simulated C differences when using the maximum than the minimum ESM method. Regardless of the direction of BD changes, the minimum ESM method was a better choice than the maximum ESM method in native and restored grassland systems where soil C concentrations decreased through the soil profile. We conclude that (1) the FD method is often not suitable and might be less accurate than direct C concentration measurements, and (2) the maximum/minimum ESM method can be accurate depending on the conditions (e.g., increasing or decreasing BID, systems conversion type), but (3) that the original ESM method is optimal for detecting soil C changes due to land use changes or management effects. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 256
页数:6
相关论文
共 19 条