Subgrid stabilized defect correction methods for the Navier-Stokes equations

被引:67
作者
Kaya, Songul [1 ]
Layton, William
Riviere, Beatrice
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
eddy viscosity; variational multiscale method; high Reynolds numbers; correction steps;
D O I
10.1137/050623942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the synthesis of a recent subgrid stabilization method with defect correction methods. The combination is particularly efficient and combines the best algorithmic features of each. We prove convergence of the method for a fixed number of corrections as the mesh size goes to zero and derive parameter scalings from the analysis. We also present some numerical tests which both verify the theoretical predictions and illustrate the method's promise.
引用
收藏
页码:1639 / 1654
页数:16
相关论文
共 39 条
[31]  
Layton WJ., 1996, VESTNIK MOSK GOS U S, V15, P25
[32]   Analysis of a defect correction method for viscoelastic fluid flow [J].
Lee, HK .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (7-8) :1213-1229
[33]   ANALYSIS OF THE SPECTRAL VANISHING VISCOSITY METHOD FOR PERIODIC CONSERVATION-LAWS [J].
MADAY, Y ;
TADMOR, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :854-870
[34]   Local defect correction with different grid types [J].
Nefedov, V ;
Mattheij, RMM .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (04) :454-468
[35]  
NIKOLOVA M, 1999, THESIS U NIJMEGEN NI
[36]  
Schwartz J., 1969, Nonlinear functional analysis
[37]   AN ASSESSMENT OF THE FINITE TERMINATION PROPERTY OF THE DEFECT CORRECTION METHOD [J].
SHAW, GJ ;
CRUMPTON, PI .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (03) :199-215
[38]   DEFECT CORRECTION PRINCIPLE AND DISCRETIZATION METHODS [J].
STETTER, HJ .
NUMERISCHE MATHEMATIK, 1978, 29 (04) :425-443
[39]  
Temam R., 1983, CBMS NSF REGIONAL C, V41