Subgrid stabilized defect correction methods for the Navier-Stokes equations

被引:67
作者
Kaya, Songul [1 ]
Layton, William
Riviere, Beatrice
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
eddy viscosity; variational multiscale method; high Reynolds numbers; correction steps;
D O I
10.1137/050623942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the synthesis of a recent subgrid stabilization method with defect correction methods. The combination is particularly efficient and combines the best algorithmic features of each. We prove convergence of the method for a fixed number of corrections as the mesh size goes to zero and derive parameter scalings from the analysis. We also present some numerical tests which both verify the theoretical predictions and illustrate the method's promise.
引用
收藏
页码:1639 / 1654
页数:16
相关论文
共 39 条
[1]   A HIGH-ACCURACY DEFECT-CORRECTION MULTIGRID METHOD FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
ALTAS, I ;
BURRAGE, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :227-233
[2]  
Anitescu M, 2004, ELECTRON T NUMER ANA, V18, P174
[3]   DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED CONVECTION-DIFFUSION PROBLEMS [J].
AXELSSON, O ;
LAYTON, W .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04) :423-455
[4]   Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method [J].
Axelsson, O ;
Nikolova, M .
COMPUTING, 1997, 58 (01) :1-30
[5]   Adaptive defect correction methods for convection dominated, convection diffusion problems [J].
Cawood, ME ;
Ervin, VJ ;
Layton, WJ ;
Maubach, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 116 (01) :1-21
[6]   CONVERGENCE ANALYSIS OF THE DEFECT-CORRECTION ITERATION FOR HYPERBOLIC PROBLEMS [J].
DESIDERI, JA ;
HEMKER, PW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01) :88-118
[7]   AN ANALYSIS OF A DEFECT-CORRECTION METHOD FOR A MODEL CONVECTION-DIFFUSION EQUATION [J].
ERVIN, V ;
LAYTON, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :169-179
[8]   Adaptive defect-correction methods for viscous incompressible flow problems [J].
Ervin, VJ ;
Layton, WJ ;
Maubach, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1165-1185
[9]  
ERVIN VJ, 1987, T 4 ARM C APPL MATH, P1173
[10]  
ERVIN VJ, 1996, COMPUTATIONAL TECHNI, P287