Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis

被引:98
作者
Jen, Yi-Huei Linda [1 ,2 ]
Musacchio, Michele [3 ]
Lander, Arthur D. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Dev & Cell Biol, Ctr Dev Biol, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
来源
NEURAL DEVELOPMENT | 2009年 / 4卷
关键词
HEPARAN-SULFATE PROTEOGLYCANS; LEUKOCYTE-ENDOTHELIAL INTERACTIONS; IN-SITU HYBRIDIZATION; NEURAL STEM-CELLS; TERMINAL DIFFERENTIATION; FUNCTIONAL-ANALYSIS; AXON GUIDANCE; EXPRESSION; MICE; FGF8;
D O I
10.1186/1749-8104-4-33
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. Results: Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning ( confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1(-/-) phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. Conclusion: These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development.
引用
收藏
页数:19
相关论文
共 116 条
[1]   Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells [J].
Aikawa, Takurna ;
Whipple, Chery A. ;
Lopez, Martha E. ;
Gunn, Jason ;
Young, Alison ;
Lander, Arthur D. ;
Korc, Murray .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (01) :89-99
[2]   The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating dally and dally-like [J].
Alberto Baena-Lopez, Luis ;
Rodriguez, Isabel ;
Baonza, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (28) :9645-9650
[3]   Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice [J].
Alexander, CM ;
Reichsman, F ;
Hinkes, MT ;
Lincecum, J ;
Becker, KA ;
Cumberledge, S ;
Bernfield, M .
NATURE GENETICS, 2000, 25 (03) :329-332
[4]  
[Anonymous], IMAGE J
[5]  
Baeg GH, 2001, DEVELOPMENT, V128, P87
[6]   Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development [J].
Basson, M. Albert ;
Echevarria, Diego ;
Ahn, Christina Petersen ;
Sudarov, Anamaria ;
Joyner, Alexandra L. ;
Mason, Ivor J. ;
Martinez, Salvador ;
Martin, Gail R. .
DEVELOPMENT, 2008, 135 (05) :889-898
[7]   Heparan sulphate proteoglycans fine-tune mammalian physiology [J].
Bishop, Joseph R. ;
Schuksz, Manuela ;
Esko, Jeffrey D. .
NATURE, 2007, 446 (7139) :1030-1037
[8]   Heparan sulfate proteoglycans and cancer [J].
Blackhall, FH ;
Merry, CLR ;
Davies, EJ ;
Jayson, GC .
BRITISH JOURNAL OF CANCER, 2001, 85 (08) :1094-1098
[9]  
Cano-Gauci DF, 1999, J CELL BIOL, V146, P255
[10]   Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding [J].
Capurro, Mariana I. ;
Xu, Ping ;
Shi, Wen ;
Li, Fuchuan ;
Jia, Angela ;
Filmus, Jorge .
DEVELOPMENTAL CELL, 2008, 14 (05) :700-711