An improved algorithm for simulating three-dimensional, viscoelastic turbulence

被引:80
作者
Vaithianathan, T.
Robert, Ashish
Brasseur, James G.
Collins, Lance R.
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
turbulence; direct numerical simulations; non-Newtonian; viscoelastic; FENE; FENE-P;
D O I
10.1016/j.jnnfm.2006.03.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a new finite-difference formulation to update the conformation tensor in dumbbell models (e.g., Oldroyd-B, FENE-P, Giesekus) that guarantees positive eigenvalues of the tensor (i.e., the tensor remains positive definite) and prevents over-extension for finite-extensible models. The formulation is a generalization of the second-order, central difference scheme developed by Kurganov and Tadmor [A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000) 241-282] that guarantees a scalar field remains everywhere positive. We have extended the algorithm to guarantee a tensor field remains everywhere positive definite following an update. Extensive testing of the algorithm shows that the volume average of the conformation tensor is conserved. Furthermore, volume averages of the conformation tensor in homogeneous turbulent shear flow made over the Eulerian grid are in quantitative agreement with Lagrangian averages made over fluid particles moving throughout the domain, highlighting the accuracy of the treatment of the convective terms. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 22
页数:20
相关论文
共 46 条
[1]   Stress gradient-induced migration effects in the Taylor-Couette flow of a dilute polymer solution [J].
Apostolakis, MV ;
Mavrantzas, VG ;
Beris, AN .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2002, 102 (02) :409-445
[2]   Simulation of time-dependent viscoelastic channel Poiseuille flow at high Reynolds numbers [J].
Beris, AN ;
Sureshkumar, R .
CHEMICAL ENGINEERING SCIENCE, 1996, 51 (09) :1451-1471
[3]  
Bird R. B., 1987, DYNAMICS POLYM LIQUI, V2
[4]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[5]   Breakup in stochastic Stokes flows: sub-Kolmogorov drops in isotropic turbulence [J].
Cristini, V ;
Blawzdziewicz, J ;
Loewenberg, M ;
Collins, LR .
JOURNAL OF FLUID MECHANICS, 2003, 492 :231-250
[6]   Homogeneous isotropic turbulence in dilute polymers [J].
De Angelis, E ;
Casciola, CM ;
Benzi, R ;
Piva, R .
JOURNAL OF FLUID MECHANICS, 2005, 531 :1-10
[7]   Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow [J].
Dimitropoulos, CD ;
Dubief, Y ;
Shaqfeh, ESG ;
Moin, P ;
Lele, SK .
PHYSICS OF FLUIDS, 2005, 17 (01) :011705-011705
[8]   Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters [J].
Dimitropoulos, CD ;
Sureshkumar, R ;
Beris, AN .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 79 (2-3) :433-468
[9]   Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow [J].
Dimitropoulos, CD ;
Sureshkumar, R ;
Beris, AN ;
Handler, RA .
PHYSICS OF FLUIDS, 2001, 13 (04) :1016-1027
[10]   On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows [J].
Dubief, Y ;
White, CM ;
Terrapon, VE ;
Shaqfeh, ESG ;
Moin, P ;
Lele, SK .
JOURNAL OF FLUID MECHANICS, 2004, 514 :271-280