Best Proximity Point Theorems for Cyclic Wardowski Type Contraction

被引:0
作者
Dey, Lakshmi Kanta [1 ]
Mondal, Saranan [1 ]
机构
[1] Natl Inst Technol Durgapur, Dept Math, Durgapur, W Bengal, India
来源
THAI JOURNAL OF MATHEMATICS | 2020年 / 18卷 / 04期
关键词
F-contraction; best proximity point; cyclic F-contraction; FIXED-POINT; EXISTENCE; CONVERGENCE; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give an extended version of fixed point result for Wardowski type contraction and define a new type of contraction namely, cyclic Wardowski type contraction or cyclic F-contraction in a complete metric space. Moreover, we prove the existence of best proximity point for cyclic F-contraction and also establish best proximity result in the setting of uniformly convex Banach space.
引用
收藏
页码:1857 / 1864
页数:8
相关论文
共 12 条
[1]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[2]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[3]   Fixed point of contractive mappings in generalized metric spaces [J].
Das, Pratulananda ;
Dey, Lakshmi Kanta .
MATHEMATICA SLOVACA, 2009, 59 (04) :499-504
[4]  
Dey L. K., 2015, BULL ALLAHABAD MATH, V30, P173
[5]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[6]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&
[7]  
Kirk W. A., 2003, FIXED POINT THEOR, V4, P79
[8]   Some common best proximity point theorems in a complete metric space [J].
Mondal S. ;
Dey L.K. .
Afrika Matematika, 2017, 28 (1-2) :85-97
[9]   Some fixed point theorems concerning F-contraction in complete metric spaces [J].
Piri, Hossein ;
Kumam, Poom .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[10]   FIXED-POINT THEOREMS FOR SET-VALUED MAPPINGS AND EXISTENCE OF BEST APPROXIMANTS [J].
PROLLA, JB .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1983, 5 (04) :449-455