Generalized Fourier transforms Fk,a

被引:20
作者
Ben Said, Salem [1 ]
Kobayashi, Toshiyuki [2 ]
Orsted, Bent [3 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[3] Univ Aarhus, Dept Math Sci, DK-8000 Aarhus, Denmark
基金
日本学术振兴会;
关键词
D O I
10.1016/j.crma.2009.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a two-parameter family of actions omega(k,a) of the Lie algebra sl(2, R) by differential-difference operators on R(N). Here, k is a multiplicity-function for the Dunkl operators, and a > 0 arises from the interpolation of the Weil representation and the minimal unitary representation of the conformal group. The action omega(k,a) lifts to a unitary representation of the universal covering of SL(2, R), and can even be extended to a holomorphic semigroup Omega(k,a) Our semigroup generalizes the Hermite semigroup studied by R. Howe (k 0, a = 2) and the Laguerre semigroup by T. Kobayashi and G. Mano (k 0, a = 1). The boundary value of our semigroup Omega(k,a) provides us with (k, a)-generalized Fourier transforms F(k,a), which includes the Dunkl transform D(k) (a = 2) and a new unitary operator H(k) (a = 1) as a Dunkl-type generalization of the classical Hankel transform. To cite this article: S. Ben Said et al., C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1119 / 1124
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 2000, Represent. Theory
[2]   Reflection groups in analysis and applications [J].
Dunkl, Charles F. .
JAPANESE JOURNAL OF MATHEMATICS, 2008, 3 (02) :215-246
[3]  
Heckman G. J., 1991, Prog. Math, V101, P181, DOI [DOI 10.1007/978-1-4612-0455-88, 10.1007/978-1-4612-0455-88]
[4]   Positive definite spherical functions on Ol'shanskii domains [J].
Hilgert, J ;
Neeb, KH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (03) :1345-1380
[5]  
Howe R., 1988, P S PURE MATH, V48, P61
[6]   Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups -: III.: Restriction of Harish-Chandra modules and associated varieties [J].
Kobayashi, T .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :229-256
[7]  
Kobayashi T., 2007, HARMONIC ANAL GROUP
[8]   An uncertainty principle for the Dunkl transform [J].
Rösler, M .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (03) :353-360
[9]  
Sato M., 1959, J FAC SCI U TOKYO, V8, P139