Silica encapsulation of quantum dots and metal clusters

被引:391
作者
Mulvaney, P [1 ]
Liz-Marzán, LM
Giersig, M
Ung, T
机构
[1] Univ Melbourne, Sch Chem, Parkville, Vic 3052, Australia
[2] Univ Vigo, Dept Quim Fis, E-36200 Vigo, Spain
[3] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
D O I
10.1039/b000136h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of nanometre thick silica shells as a means to stabilize metal clusters and semiconductor particles is discussed, and its potential advantages over conventional organic capping agents are presented. Shell deposition depends on control of the double layer potential, and requires priming of the core particle surface. Chemical reactions are possible within the core, via diffusion of reactants through the shell layer. Quantum dots can be stabilized against photochemical degradation through silica deposition, whilst retaining strong fluorescence quantum yields and their size dependent optical properties. Ordered 3D and 2D arrays of a macroscopic size with uniform particle spacing can be created. Thin colloid films can also be created with well-defined interparticle spacing, allowing controlled coupling of exciton and surface plasmon modes to be investigated. A number of future core-shell nanocomposite structures are postulated, including quantum bubbles and single electron capacitors based on Au@SiO2.
引用
收藏
页码:1259 / 1270
页数:12
相关论文
共 50 条
[21]   Semiconductor quantum dots through conversion of micelle-generated metal clusters [J].
Wahl, D. ;
Ladenburger, A. ;
Feneberg, M. ;
Schoch, W. ;
Thonke, K. ;
Sauer, R. .
APPLIED PHYSICS LETTERS, 2009, 95 (09)
[22]   Excitonic clusters in coupled quantum dots [J].
Filinov, AV ;
Bonitz, M ;
Lozovik, YE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (22) :5899-5904
[23]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[24]   Vacancy Clusters in Graphane as Quantum Dots [J].
Singh, Abhishek K. ;
Penev, Evgeni S. ;
Yakobson, Boris I. .
ACS NANO, 2010, 4 (06) :3510-3514
[25]   Antibunching in small clusters of quantum dots [J].
Geisenhoff, Jessica ;
Whitcomb, Kevin ;
Ryan, Duncan ;
Gelfand, Martin ;
Van Orden, Alan .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
[26]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Univ of California, Berkeley, United States .
Science, 5251 (933-937)
[27]   Conversion of InP Clusters to Quantum Dots [J].
Friedfeld, Max R. ;
Johnson, Dane A. ;
Cossairt, Brandi M. .
INORGANIC CHEMISTRY, 2019, 58 (01) :803-810
[28]   Interface formation during silica encapsulation of colloidal CdSe/CdS quantum dots observed by in situ Raman spectroscopy [J].
Biermann, Amelie ;
Aubert, Tangi ;
Baumeister, Philipp ;
Drijvers, Emile ;
Hens, Zeger ;
Maultzsch, Janina .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (13)
[29]   Encapsulation of CdTe Quantum Dots into Synthetic Viral Capsids [J].
Fujita, Seiya ;
Matsuura, Kazunori .
CHEMISTRY LETTERS, 2016, 45 (08) :922-924
[30]   Controlled encapsulation of colloidal semiconductor quantum dots in a microdroplet [J].
Bialy, Maciej ;
Jankowska, Martyna ;
Sulowska, Karolina ;
Szalkowski, Marcin ;
Niedziolka-Jonsson, Joanna ;
Mackowski, Sebastian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 27 (01) :346-354