The generalized Newton iteration for the matrix sign function

被引:9
作者
Sun, XB [1 ]
Quintana-Ortí, ES
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Univ Jaume 1, Dept Ingn & Ciencia Comp, Castellon de La Plana 12071, Spain
关键词
matrix sign function; generalized Newton iteration; generalized eigenvalue problems; deflating subspaces; high-performance computers;
D O I
10.1137/S1064827598348696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present modified algorithms for computing deflating subspaces of matrix pairs using the matrix sign function. Our new algorithms achieve a considerable reduction of the computational cost of the generalized Newton iteration for the matrix sign function and improve the accuracy of the computed deflating subspaces. The matrix sign function is thus revealed as an effective technique for applications in which bases for the deflating subspaces are required. When partial or complete information about the eigenspectrum is desired, the matrix sign function can be used as an initial divide-and-conquer technique. The basic kernels involved in this iteration are especially appropriate for current high-performance architectures.
引用
收藏
页码:669 / 683
页数:15
相关论文
共 30 条
[1]  
Anderson E., 1995, LAPACK USERS GUIDE
[2]   GENERALIZED EIGENPROBLEM ALGORITHMS AND SOFTWARE FOR ALGEBRAIC RICCATI-EQUATIONS [J].
ARNOLD, WF ;
LAUB, AJ .
PROCEEDINGS OF THE IEEE, 1984, 72 (12) :1746-1754
[3]   The spectral decomposition of nonsymmetric matrices on distributed memory parallel computers [J].
Bai, Z ;
Demmel, J ;
Dongarra, J ;
Petitet, A ;
Robinson, H ;
Stanley, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (05) :1446-1461
[4]  
BAI Z, 1996, DESIGN PARALLEL NO 2
[5]   An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems [J].
Bai, ZJ ;
Demmel, J ;
Gu, M .
NUMERISCHE MATHEMATIK, 1997, 76 (03) :279-308
[6]   Using the matrix sign function to compute invariant subspaces [J].
Bai, ZJ ;
Demmel, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :205-225
[7]   Solving stable generalized Lyapunov equations with the matrix sign function [J].
Benner, P ;
Quintana-Ortí, ES .
NUMERICAL ALGORITHMS, 1999, 20 (01) :75-100
[8]  
BENNER P, 1998, P MTNS 98 PAD IT JUL, P573
[9]  
Benner P., 1995, 9522 SPC TU CHEMN ZW
[10]  
BENNER P., 1997, THESIS TU CHEMNITZ Z