Model-independent energy budget for LISA

被引:85
作者
Giese, Felix [1 ]
Konstandin, Thomas [1 ]
Schmitz, Kai [2 ]
van de Vis, Jorinde [1 ]
机构
[1] DESY, Notkestr 85, D-22607 Hamburg, Germany
[2] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2021年 / 01期
关键词
cosmological phase transitions; gravitational waves / sources; particle physics cosmology connection;
D O I
10.1088/1475-7516/2021/01/072
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide an easy method to obtain the kinetic energy fraction in gravitational waves, generated during a cosmological first-order phase transition, as a function of only the wall velocity and quantities that can be determined from the particle physics model at the nucleation temperature. This generalizes recent work that achieved this goal for detonations. Here we present the corresponding results for deflagrations and hybrids. Unlike for detonations, the sound speed in the symmetric phase also enters the analysis. We perform a detailed comparison between our model-independent approach and other approaches in the literature. We provide a Python code snippet to determine the kinetic energy fraction K as a function of the wall velocity, the two speeds of sound and the strength parameter of the phase transition. We also assess how realistic sizable deviations in speed of sound are close to the phase transition temperature in a specific model.
引用
收藏
页数:26
相关论文
共 35 条
[1]  
Baker J., arXiv:1907.06482
[2]   Electroweak bubble wall speed limit [J].
Boedeker, Dietrich ;
Moore, Guy D. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05)
[3]   Detecting gravitational waves from cosmological phase transitions with LISA: an update [J].
Caprini, Chiara ;
Chala, Mikael ;
Dorsch, Glauber C. ;
Hindmarsh, Mark ;
Huber, Stephan J. ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Rummukainen, Kari ;
Schwaller, Pedro ;
Servant, Geraldine ;
Tranberg, Anders ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03)
[4]   Cosmological backgrounds of gravitational waves [J].
Caprini, Chiara ;
Figueroa, Daniel G. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (16)
[5]   Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions [J].
Caprini, Chiara ;
Hindmarsh, Mark ;
Huber, Stephan ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Petiteau, Antoine ;
Schwaller, Pedro ;
Servant, Geraldine ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04)
[6]   Stochastic gravitational wave backgrounds [J].
Christensen, Nelson .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[7]   Standard model cross-over on the lattice [J].
D'Onofrio, Michela ;
Rummukainen, Kari .
PHYSICAL REVIEW D, 2016, 93 (02)
[8]   Dynamics of non-renormalizable electroweak symmetry breaking [J].
Delaunay, Cedric ;
Grojean, Christophe ;
Wells, James D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)
[9]   Updated predictions for gravitational waves produced in a strongly supercooled phase transition [J].
Ellis, John ;
Lewicki, Marek ;
Vaskonen, Ville .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (11)
[10]   Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source [J].
Ellis, John ;
Lewicki, Marek ;
Miguel No, Jose .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (07)