On bilinear maps determined by rank one idempotents

被引:13
作者
Alaminos, J. [3 ]
Bresar, M. [1 ,2 ]
Extremera, J. [3 ]
Villena, A. R. [3 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Matrix algebra; Zero product; Rank one idempotent; Linear map; Bilinear map; Linear preserver problem; DERIVATIONS; ALGEBRAS;
D O I
10.1016/j.laa.2009.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M-n, n >= 2, be the algebra of all n x n matrices over a field F of characteristic not 2, and let Phi be a bilinear map from M-n x M-n into an arbitrary vector space X over F. Our main result states that if phi (e, f) = 0 whenever e and f are orthogonal rank one idempotents, then there exist linear maps Phi(1), Phi(2) : Mn -> X such that phi (a, b) = Phi(1) (ab) + Phi(2) (ba) for all a, b is an element of M-n. This is applicable to some linear preserver problems. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 743
页数:6
相关论文
共 8 条
[1]  
Alaminos J, 2007, P ROY SOC EDINB A, V137, P1
[2]   Maps preserving zero products [J].
Alaminos, J. ;
Bresar, M. ;
Extremera, J. ;
Villena, A. R. .
STUDIA MATHEMATICA, 2009, 193 (02) :131-159
[3]  
ALAMINOS J, P EDINBURGH IN PRESS
[4]   On bilinear maps on matrices with applications to commutativity preservers [J].
Bresar, M ;
Semrl, P .
JOURNAL OF ALGEBRA, 2006, 301 (02) :803-837
[5]   MAPPINGS WHICH PRESERVE IDEMPOTENTS, LOCAL AUTOMORPHISMS, AND LOCAL DERIVATIONS [J].
BRESAR, M ;
SEMRL, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :483-496
[6]   Zero product determined matrix algebras [J].
Bresar, Matej ;
Grasic, Mateja ;
Sanchez Ortega, Juana .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) :1486-1498
[7]  
GRASIC M, LINEAR MULT IN PRESS
[8]  
Molnar L., 2007, LECT NOTES MATH