Lattice construction of logarithmic modules for certain vertex algebras

被引:49
作者
Adamovic, Drazen [1 ]
Milas, Antun [2 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 41000, Croatia
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2009年 / 15卷 / 04期
基金
美国国家科学基金会;
关键词
CONFORMAL FIELD-THEORIES; OPERATOR-ALGEBRAS; W-ALGEBRAS; MINIMAL MODELS; FUSION RULES; LIE-ALGEBRAS; REPRESENTATIONS; C-2-COFINITENESS; SUPERALGEBRAS; EXTENSIONS;
D O I
10.1007/s00029-009-0009-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general method for constructing logarithmic modules in vertex operator algebra theory is presented. By utilizing this approach, we give explicit vertex operator construction of certain indecomposable and logarithmic modules for the triplet vertex algebra W(p) and for other subalgebras of lattice vertex algebras and their N = 1 super extensions. We analyze in detail indecomposable modules obtained in this way, giving further evidence for the conjectural equivalence between the category of W(p)-modules and the category of modules for the restricted quantum group (U) over bar (q)(sl(2)), q = e(pi i/p). We also construct logarithmic representations for a certain affine vertex operator algebra at admissible level realized in Adamovic (J. Pure Appl. Algebra 196: 119-134, 2005). In this way we prove the existence of the logarithmic representations predicted in Gaberdiel (Int. J. Modern Phys. A 18, 4593-4638, 2003). Our approach enlightens related logarithmic intertwining operators among indecomposable modules, which we also construct in the paper.
引用
收藏
页码:535 / 561
页数:27
相关论文
共 39 条
[1]  
Abe T, 2007, MATH Z, V255, P755, DOI 10.1007/s00209-006-0048-5
[4]   Logarithmic intertwining operators and W(2,2p-1) algebras N [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[5]   On the triplet vertex algebra W(p) [J].
Adamovic, Drazen ;
Milas, Antun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2664-2699
[6]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[7]   On W-Algebras Associated to (2, p) Minimal Models and Their Representations [J].
Adamovic, Drazen ;
Milas, Antun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (20) :3896-3934
[8]  
Adamovic D, 2009, CONTEMP MATH, V497, P1
[9]   The N=1 Triplet Vertex Operator Superalgebras: Twisted Sector [J].
Adamovic, Drazen ;
Milas, Antun .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
[10]   The N=1 Triplet Vertex Operator Superalgebras [J].
Adamovic, Drazen ;
Milas, Antun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) :225-270