Isogeometric Analysis on V-reps: First results

被引:41
作者
Antolin, Pablo [1 ]
Buffa, Annalisa [1 ,2 ]
Martinelli, Massimiliano [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Pavia, Italy
基金
欧洲研究理事会;
关键词
Numerical methods for PDEs; Isogeometric methods; Trimmed geometries; V-reps; FINITE-ELEMENT-METHOD; CELL METHOD; NURBS; APPROXIMATION; DESIGN; ROBUST; QUADRATURE; SPLINES; NEUMANN; MESH;
D O I
10.1016/j.cma.2019.07.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inspired by the introduction of Volumetric Modeling via volumetric representations (V-reps) by Massarwi and Elber in 2016, in this paper we present a novel approach for the construction of isogeometric numerical methods for elliptic PDEs on trimmed geometries, seen as a special class of more general V-reps. We develop tools for approximation and local re-parameterization of trimmed elements for three dimensional problems, and we provide a theoretical framework that fully justifies our algorithmic choices. We validate our approach both on two and three dimensional problems, for diffusion and linear elasticity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:976 / 1002
页数:27
相关论文
共 63 条
[11]   ADAPTIVE ISOGEOMETRIC METHODS WITH HIERARCHICAL SPLINES: AN OVERVIEW [J].
Bracco, Cesare ;
Buffa, Annalisa ;
Giannelli, Carlotta ;
Vazquez, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) :241-261
[12]  
BRAMBLE JH, 1994, MATH COMPUT, V63, P1, DOI 10.1090/S0025-5718-1994-1242055-6
[13]   Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures [J].
Breitenberger, M. ;
Apostolatos, A. ;
Philipp, B. ;
Wuechner, R. ;
Bletzinger, K. -U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :401-457
[14]   Isogeometric mortar methods [J].
Brivadis, Ericka ;
Buffa, Annalisa ;
Wohlmuth, Barbara ;
Wunderlich, Linus .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :292-319
[15]  
Buffa A., 2019, ARXIV190204937
[16]   On Quasi-Interpolation Operators in Spline Spaces [J].
Buffa, Annalisa ;
Garau, Eduardo M. ;
Giannelli, Carlotta ;
Sangalli, Giancarlo .
BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 :73-91
[17]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501
[18]   FICTITIOUS DOMAIN METHODS USING CUT ELEMENTS: III. A STABILIZED NITSCHE METHOD FOR STOKES' PROBLEM [J].
Burman, Erik ;
Hansbo, Peter .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03) :859-874
[19]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341
[20]   Ghost penalty [J].
Burman, Erik .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (21-22) :1217-1220