Isogeometric Analysis on V-reps: First results

被引:39
作者
Antolin, Pablo [1 ]
Buffa, Annalisa [1 ,2 ]
Martinelli, Massimiliano [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Pavia, Italy
基金
欧洲研究理事会;
关键词
Numerical methods for PDEs; Isogeometric methods; Trimmed geometries; V-reps; FINITE-ELEMENT-METHOD; CELL METHOD; NURBS; APPROXIMATION; DESIGN; ROBUST; QUADRATURE; SPLINES; NEUMANN; MESH;
D O I
10.1016/j.cma.2019.07.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inspired by the introduction of Volumetric Modeling via volumetric representations (V-reps) by Massarwi and Elber in 2016, in this paper we present a novel approach for the construction of isogeometric numerical methods for elliptic PDEs on trimmed geometries, seen as a special class of more general V-reps. We develop tools for approximation and local re-parameterization of trimmed elements for three dimensional problems, and we provide a theoretical framework that fully justifies our algorithmic choices. We validate our approach both on two and three dimensional problems, for diffusion and linear elasticity. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:976 / 1002
页数:27
相关论文
共 63 条
[1]   Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM [J].
Aimi, A. ;
Calabro, F. ;
Diligenti, M. ;
Sampoli, M. L. ;
Sangalli, G. ;
Sestini, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 331 :327-342
[2]  
[Anonymous], 2015, ADV MODEL SIMUL SCI
[3]  
[Anonymous], 2002, The finite element method for elliptic problems, DOI DOI 10.1137/1.9780898719208
[4]  
[Anonymous], 1993, JOINT M CAN MATH SOC
[5]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[6]  
[Anonymous], 1974, DESIGNING VOLUMES
[7]   FINITE-ELEMENT APPROXIMATION OF ELLIPTIC-EQUATIONS WITH A NEUMANN OR ROBIN CONDITION ON A CURVED BOUNDARY [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (03) :321-342
[8]   A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1987, 51 (01) :23-36
[9]   Embedded structural entities in NURBS-based isogeometric analysis [J].
Bauer, A. M. ;
Breitenberger, M. ;
Philipp, B. ;
Wuechner, R. ;
Bletzinger, K. -U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 :198-218
[10]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090