On probabilistic Mandelbrot maps

被引:11
作者
Andreadis, Ioannis [2 ]
Karakasidis, Theodoros E. [1 ]
机构
[1] Univ Thessaly, Dept Civil Engn, GR-38334 Volos, Greece
[2] Int Sch Hague, NL-2554 BX The Hague, Netherlands
关键词
CHAOTIC ATTRACTORS; JULIA SETS; NOISE; DYNAMICS;
D O I
10.1016/j.chaos.2009.03.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a definition for a probabilistic Mandelbrot map in order to extend and support the study initiated by Argyris et al. [Argyris J, Andreadis I, Karakasidis Th. On perturbations of the Mandelbrot map. Chaos, Solitons and Fractals 2000; 11 : 1131 -1136.] with regard to the numerical stability of the Mandelbrot and Julia set of the Mandelbrot map when Subjected to noise. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1577 / 1583
页数:7
相关论文
共 16 条
[1]   Noise perturbation of the thermostat in constant temperature molecular dynamics simulations [J].
Andreadis, I ;
Karakasidis, TE .
CHAOS SOLITONS & FRACTALS, 2004, 20 (05) :1165-1172
[2]  
[Anonymous], 1986, The beauty of fractals: images of complex dynamical systems
[3]   On the Julia set of the perturbed Mandelbrot map [J].
Argyris, J ;
Karakasidis, TE ;
Andreadis, I .
CHAOS SOLITONS & FRACTALS, 2000, 11 (13) :2067-2073
[4]   The influence of noise on the correlation dimension of chaotic attractors [J].
Argyris, J ;
Andreadis, I ;
Pavlos, G ;
Athanasiou, M .
CHAOS SOLITONS & FRACTALS, 1998, 9 (03) :343-361
[5]   On perturbations of the Mandelbrot map [J].
Argyris, J ;
Andreadis, I ;
Karakasidis, TE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1131-1136
[6]   On the Julia sets of a noise-perturbed Mandelbrot map [J].
Argyris, J ;
Karakasidis, TE ;
Andreadis, I .
CHAOS SOLITONS & FRACTALS, 2002, 13 (02) :245-252
[7]   On the influence of noise on the coexistence of chaotic attractors [J].
Argyris, J ;
Andreadis, I .
CHAOS SOLITONS & FRACTALS, 2000, 11 (06) :941-946
[8]  
Argyris J., 1994, EXPLORATION CHAOS
[9]   Super-attracting cycles for the cosine-root family [J].
Brown, D. A. ;
Halstead, M. L. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (05) :1191-1202
[10]  
Cheng J, 2006, INT J NONLIN SCI NUM, V7, P167