Microdissected "cuboids" for microfluidic drug testing of intact tissues

被引:36
作者
Horowitz, Lisa F. [1 ]
Rodriguez, Adan D. [1 ]
Au-Yeung, Allan [1 ,2 ]
Bishop, Kevin W. [1 ,3 ]
Barner, Lindsey A. [3 ]
Mishra, Gargi [4 ]
Raman, Aashik [1 ]
Delgado, Priscilla [1 ]
Liu, Jonathan T. C. [1 ,3 ,6 ]
Gujral, Taranjit S. [5 ]
Mehrabi, Mehdi [7 ]
Yang, Mengsu [2 ]
Pierce, Robert H. [4 ]
Folch, Albert [1 ]
机构
[1] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[2] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Peoples R China
[3] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[4] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[5] Fred Hutchinson Canc Res Ctr, Human Biol Div, 1124 Columbia St, Seattle, WA 98104 USA
[6] Univ Washington, Dept Lab Med & Pathol, Seattle, WA 98195 USA
[7] Univ Pretoria, Dept Mech & Aeronaut Engn, Pretoria, South Africa
基金
美国国家科学基金会;
关键词
ON-A-CHIP; EX-VIVO; DESIGN CONSIDERATIONS; PANCREATIC-CANCER; STEM-CELL; IN-VITRO; PDMS; ABSORPTION; PLATFORM; DISEASE;
D O I
10.1039/d0lc00801j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As preclinical animal tests often do not accurately predict drug effects later observed in humans, most drugs under development fail to reach the market. Thus there is a critical need for functional drug testing platforms that use human, intact tissues to complement animal studies. To enable future multiplexed delivery of many drugs to one small biopsy, we have developed a multi-well microfluidic platform that selectively treats cuboidal-shaped microdissected tissues or "cuboids" with well-preserved tissue microenvironments. We create large numbers of uniformly-sized cuboids by semi-automated sectioning of tissue with a commercially available tissue chopper. Here we demonstrate the microdissection method on normal mouse liver, which we characterize with quantitative 3D imaging, and on human glioma xenograft tumors, which we evaluate after time in culture for viability and preservation of the microenvironment. The benefits of size uniformity include lower heterogeneity in future biological assays as well as facilitation of their physical manipulation by automation. Our prototype platform consists of a microfluidic circuit whose hydrodynamic traps immobilize the live cuboids in arrays at the bottom of a multi-well plate. Fluid dynamics simulations enabled the rapid evaluation of design alternatives and operational parameters. We demonstrate the proof-of-concept application of model soluble compounds such as dyes (CellTracker, Hoechst) and the cancer drug cisplatin. Upscaling of the microfluidic platform and microdissection method to larger arrays and numbers of cuboids could lead to direct testing of human tissues at high throughput, and thus could have a significant impact on drug discovery and personalized medicine.
引用
收藏
页码:122 / 142
页数:21
相关论文
共 74 条
[1]  
[Anonymous], 2017, BIORXIV, P164624
[2]   3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade [J].
Aref, Amir R. ;
Campisi, Marco ;
Ivanova, Elena ;
Portell, Andrew ;
Larios, Dalia ;
Piel, Brandon P. ;
Mathur, Natasha ;
Zhou, Chensheng ;
Coakley, Raven Vlahos ;
Bartels, Alan ;
Bowden, Michaela ;
Herbert, Zach ;
Hill, Sarah ;
Gilhooley, Sean ;
Carter, Jacob ;
Canadas, Israel ;
Thai, Tran C. ;
Kitajima, Shunsuke ;
Chiono, Valeria ;
Paweletz, Cloud P. ;
Barbie, David A. ;
Kamm, Roger D. ;
Jenkins, Russell W. .
LAB ON A CHIP, 2018, 18 (20) :3129-3143
[3]   Screening therapeutic EMT blocking agents in a three-dimensional microenvironment [J].
Aref, Amir R. ;
Huang, Ruby Yun-Ju ;
Yu, Weimiao ;
Chua, Kian-Ngiap ;
Sun, Wei ;
Tu, Ting-Yuan ;
Bai, Jing ;
Sim, Wen-Jing ;
Zervantonakis, Ioannis K. ;
Thiery, Jean Paul ;
Kamm, Roger D. .
INTEGRATIVE BIOLOGY, 2013, 5 (02) :381-389
[4]   Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy [J].
Astolfi, M. ;
Peant, B. ;
Lateef, M. A. ;
Rousset, N. ;
Kendall-Dupont, J. ;
Carmona, E. ;
Monet, F. ;
Saad, F. ;
Provencher, D. ;
Mes-Masson, A. -M. ;
Gervais, T. .
LAB ON A CHIP, 2016, 16 (02) :312-325
[5]  
Astolfi M., 2013, P 17 INT C MIN CHEM, P422
[6]   Modeling Pancreatic Cancer with Organoids [J].
Baker, Lindsey A. ;
Tiriac, Herve ;
Clevers, Hans ;
Tuveson, David A. .
TRENDS IN CANCER, 2016, 2 (04) :176-190
[7]   A Critical need for Better Cancer Immunotherapy Models: Are Organotypic Tumor spheroid Cultures the Answer? [J].
Balko, Justin M. ;
Sosman, Jeffrey A. .
CANCER DISCOVERY, 2018, 8 (02) :143-145
[8]   Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis [J].
Baratta, Janie L. ;
Ngo, Anthony ;
Lopez, Bryan ;
Kasabwalla, Natasha ;
Longmuir, Kenneth J. ;
Robertson, Richard T. .
HISTOCHEMISTRY AND CELL BIOLOGY, 2009, 131 (06) :713-726
[9]   Multi-resolution open-top light-sheet microscopy to enable efficient 3D pathology workflows [J].
Barner, Lindsey A. ;
Glaser, Adam K. ;
Huang, Hongyi ;
True, Lawrence D. ;
Liu, Jonathan T. C. .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (11) :6605-6619
[10]   Solid immersion meniscus lens (SIMlens) for open-top light-sheet microscopy [J].
Barner, Lindsey A. ;
Glaser, Adam K. ;
True, Lawrence D. ;
Reder, Nicholas P. ;
Liu, Jonathan T. C. .
OPTICS LETTERS, 2019, 44 (18) :4451-4454