EXISTENCE AND UNIQUENESS OF STRONG PERIODIC SOLUTIONS OF THE PRIMITIVE EQUATIONS OF THE OCEAN

被引:6
作者
Medjo, Theodore Tachim [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
primitive equations; periodic solutions; approximate solutions; strong solutions; LARGE-SCALE OCEAN;
D O I
10.3934/dcds.2010.26.1491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and uniqueness of the global and periodic strong solutions of the primitive equations of the ocean. We prove that there exists a unique periodic strong solution provided that the heat source is regular and small enough. The proof of the existence is based on approximate solutions and a fixed point argument. We also derive some a priori estimates on the strong solutions.
引用
收藏
页码:1491 / 1508
页数:18
相关论文
共 23 条
[1]  
Bellido MAR., 2001, DIFFERENTIAL INTEGRA, V14, P1381
[2]   Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :245-267
[3]  
HALTINER CJ, 1980, NUMERICAL PREDICTION
[4]  
Hu C., 2002, CHIN ANN MATH B, V23, P1
[5]   Asymptotic analysis of the primitive equations under the small depth assumption [J].
Hu, CB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (03) :425-460
[6]  
Hu CB, 2003, DISCRETE CONT DYN-A, V9, P97
[7]  
Ju N, 2007, DISCRETE CONT DYN-A, V17, P159
[8]   Existence of periodic solutions of the Navier-Stokes equations [J].
Kato, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) :141-157
[9]   Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations [J].
Kobelkov, Georgij M. .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (04) :283-286
[10]  
Lions J. L., 1993, Computational Mechanics Advances, V1, P55