PROFINITE GROUPS WITH AN AUTOMORPHISM WHOSE FIXED POINTS ARE RIGHT ENGEL

被引:4
作者
Acciarri, C. [1 ]
Khukhro, E., I [2 ,3 ]
Shumyatsky, P. [1 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Univ Lincoln, Charlotte Scott Res Ctr Algebra, Lincoln LN6 7TS, England
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
Profinite groups; finite groups; Engel condition; locally nilpotent groups; LIE-ALGEBRAS; IDENTITIES;
D O I
10.1090/proc/14519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An element g of a group G is said to be right Engel if for every x is an element of G there is a number n = n(g, x) such that [g, n(x)] = 1. We prove that if a profinite group G admits a coprime automorphism phi of prime order such that every fixed point of phi is a right Engel element, then G is locally nilpotent.
引用
收藏
页码:3691 / 3703
页数:13
相关论文
共 24 条
[1]   ENGELSCHE ELEMENTE NOETHERSCHER GRUPPEN [J].
BAER, R .
MATHEMATISCHE ANNALEN, 1957, 133 (03) :256-270
[2]   Identities of graded algebras [J].
Bahturin, YA ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 1998, 205 (01) :1-12
[3]   A note on Engel groups and local nilpotence [J].
Burns, RG ;
Medvedev, Y .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 64 :92-100
[4]   ENGEL STRUCTURE OF LINEAR GROUPS [J].
GRUENBERG, KW .
JOURNAL OF ALGEBRA, 1966, 3 (03) :291-+
[5]  
Hall P., 1958, ILLINOIS J MATH, V2, P787
[6]  
Heineken H., 1960, Arch. Math. (Basel), V11, P321, DOI DOI 10.1007/BF01236951
[7]  
Higman G., 1957, J.London Math. Soc. (2), V32, P321, DOI DOI 10.1112/JLMS/S1-32.3.321
[8]  
Kelley J. L., 1975, Graduate Texts in Mathematics, V27
[9]  
Khukhro E. I., 1998, LONDON MATH SOC LECT, V246
[10]   Bounding the exponent of a finite group with automorphisms [J].
Khukhro, EI ;
Shumyatsky, P .
JOURNAL OF ALGEBRA, 1999, 212 (01) :363-374