On the Distribution of Limit Cycles in a Lienard System with a Nilpotent Center and a Nilpotent Saddle

被引:4
作者
Asheghi, R. [1 ]
Bakhshalizadeh, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 02期
关键词
Melnikov function; Abelian integrals; limit cycles; Lienard system; nilpotent center and saddle; ELLIPTIC HAMILTONIAN-SYSTEMS; ABELIAN-INTEGRALS; POLYNOMIAL SYSTEMS; HILBERT NUMBER; LOWER BOUNDS; PERTURBATIONS; BIFURCATION; DEGREE-4; ZEROS; LOOP;
D O I
10.1142/S0218127416500255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Abelian integral I(h) corresponding to the following Lienard system, (x) over dot = y, (y) over dot = x(3)(x - 1)(3) + epsilon(a + bx + cx(3) + x(5)) y, where 0 < epsilon << 1, a, b and c are real bounded parameters. By using the expansion of I(h) and a new algebraic criterion developed in [ Grau et al., 2011], it will be shown that the sharp upper bound of the maximal number of isolated zeros of I(h) is 4. Hence, the above system can have at most four limit cycles bifurcating from the corresponding period annulus. Moreover, the configuration (distribution) of the limit cycles is also determined. The results obtained are new for this kind of Lienard system.
引用
收藏
页数:15
相关论文
共 32 条
[1]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[2]  
Atabaigi A, 2011, J APPL ANAL COMPUT, V1, P299
[3]   On the number of limit cycles of a class of polynomial systems of Lienard type [J].
Chang, Guifeng ;
Zhang, Tonghua ;
Han, Maoan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) :775-780
[4]   Perturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :209-243
[5]   Perturbation from an elliptic Hamiltonian of degree four - IV figure eight-loop [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (02) :512-554
[6]   Perturbation from an elliptic Hamiltonian of degree four - III global centre [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (02) :473-511
[7]   Perturbations from an elliptic Hamiltonian of degree four I. Saddle loop and two saddle cycle [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :114-157
[8]   Abelian integrals and limit cycles [J].
Dumortier, Freddy ;
Roussarie, Robert .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :116-165
[9]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[10]  
Han M., 2013, Bifurcation Theory of Limit Cycles