Gray optical dips in the subpicosecond regime

被引:42
作者
Li, L [1 ]
Li, ZH
Xu, ZY
Zhou, GS
Spatschek, KH
机构
[1] Shanxi Univ, Dept Phys, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Shanxi, Peoples R China
[3] Shanxi Univ, Dept Elect & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China
[4] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Narrow optical dip solutions are investigated when, besides self-phase modulation and group velocity dispersion, also third-order dispersion, nonlinear dispersion, and stimulated Raman scattering are taken into account. By using the inverse scattering transform for the higher-order optical nonlinear Schrodinger (HNLS) equation under Hirota parameter conditions, the dark N-soliton solution is constructed. The explicit forms of the one- and two-soliton solutions are investigated in detail. The results show an interesting property of the gray two-soliton solution. Two gray dips do not interact provided their modulation depths are appropriately chosen. In addition, when generalizing the HNLS equation (to regions beyond the Hirota parameter conditions), it can be shown that also quite stable generalized two-dip solitary wave solutions exist. The latter, although not belonging to integrable systems, approximately preserve most of the interesting properties detected for the integrable Hirota equation.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]  
Agrawal G, 1989, Nonlinear Fiber Optics
[3]   MULTIPLE DARK SOLITON-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
BLOW, KJ ;
DORAN, NJ .
PHYSICS LETTERS A, 1985, 107 (02) :55-58
[4]   Analytical solution for the modified nonlinear Schrodinger equation describing optical shock formation [J].
de Oliveira, JR ;
de Moura, MA .
PHYSICAL REVIEW E, 1998, 57 (04) :4751-4756
[5]   PICOSECOND STEPS AND DARK PULSES THROUGH NONLINEAR SINGLE-MODE FIBERS [J].
EMPLIT, P ;
HAMAIDE, JP ;
REYNAUD, F ;
FROEHLY, C ;
BARTHELEMY, A .
OPTICS COMMUNICATIONS, 1987, 62 (06) :374-379
[6]   Optical solitary waves in the higher order nonlinear Schrodinger equation [J].
Gedalin, M ;
Scott, TC ;
Band, YB .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :448-451
[7]   THE PROPAGATION OF BRIGHT AND DARK SOLITONS IN LOSSY OPTICAL FIBERS [J].
GIANNINI, JA ;
JOSEPH, RI .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (12) :2109-2114
[8]   GENERATION OF DARK SOLITONS IN OPTICAL FIBERS [J].
GREDESKUL, SA ;
KIVSHAR, YS .
PHYSICAL REVIEW LETTERS, 1989, 62 (08) :977-977
[9]   Dynamics of wave packets in the frame of third-order nonlinear Schrodinger equation [J].
Gromov, EM ;
Piskunova, LV ;
Tyutin, VV .
PHYSICS LETTERS A, 1999, 256 (2-3) :153-158
[10]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144