Backstepping Control of Projection Synchronization Among Two Three-Dimensional Heterogeneous Chaotic Systems Based on DNA Strand Displacement

被引:0
作者
Wang, Yingcong [1 ]
Shan, Zhanjiang [1 ]
Liu, Peng [1 ]
Wang, Yanfeng [1 ]
Sun, Junwei [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA Strand Displacement; Backstepping Control; Projection Synchronization; Heterogeneous Chaotic System; OSCILLATORY SYSTEM; CIRCUIT; DESIGN;
D O I
10.1166/jno.2022.3238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although many papers on synchronization of nonlinear systems have been published, relatively few studies have been done on projection synchronization in the DNA field. A backstepping control technology with DNA strand displacement is presented in this study, which achieves projection synchronization for two three-dimensional heterogeneous DNA chaotic systems. Some strand displacement reaction modules for designing DNA chaotic systems are given. By utilizing the related theory of DNA molecules and chaos theory, two heterogeneous DNA chaotic systems are presented, and their dynamic behaviors are analyzed to prove the correctness of the designed systems. Three controllers are obtained by using the combination of DNA strand displacement and backstepping control. Numerical simulation examples of two heterogeneous DNA chaotic systems illustrate that the controller has a better backstepping control effect and achieves the expected IP: 203 8 109 20 On Fri 21 Oct 2022 11:51:31 projection synchronization performance.Copyr
引用
收藏
页码:616 / 627
页数:12
相关论文
共 37 条
[1]   Design of a Single-Channel Chaotic Secure Communication System Implemented by DNA Strand Displacement [J].
An, Xiaoyu ;
Meng, Zijie ;
Wang, Yanfeng ;
Sun, Junwei .
ACS SYNTHETIC BIOLOGY, 2022, 11 (02) :843-854
[2]   Proportional-Integral-Derivative Control of Four-Variable Chaotic Oscillatory Circuit Based on DNA Strand Displacement [J].
An, Xiaoyu ;
Meng, Zijie ;
Wang, Yanfeng ;
Sun, Junwei .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (04) :612-623
[3]   DNA-Based Dynamic Reaction Networks [J].
Fu, Ting ;
Lyu, Yifan ;
Liu, Hui ;
Peng, Ruizi ;
Zhang, Xiaobing ;
Ye, Mao ;
Tan, Weihong .
TRENDS IN BIOCHEMICAL SCIENCES, 2018, 43 (07) :547-560
[4]   Modeling DNA-Strand Displacement Reactions in the Presence of Base-Pair Mismatches [J].
Irmisch, Patrick ;
Ouldridge, Thomas E. ;
Seidel, Ralf .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) :11451-11463
[5]   Biocomputing Based on DNA Strand Displacement Reactions [J].
Lv, Hui ;
Li, Qian ;
Shi, Jiye ;
Fan, Chunhai ;
Wang, Fei .
CHEMPHYSCHEM, 2021, 22 (12) :1151-1166
[6]   Synthetic DNA applications in information technology [J].
Meiser, Linda C. ;
Nguyen, Bichlien H. ;
Chen, Yuan-Jyue ;
Nivala, Jeff ;
Strauss, Karin ;
Ceze, Luis ;
Grass, Robert N. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]  
Meng Z., 2021, P 16 INT C BIOINSPIR, P437
[8]   Chaos synchronization in generalized Lorenz systems and an application to image encryption [J].
Moon, Sungju ;
Baik, Jong-Jin ;
Seo, Jaemyeong Mango .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
[9]   Biomolecular implementation of linear I/O systems [J].
Oishi, K. ;
Klavins, E. .
IET SYSTEMS BIOLOGY, 2011, 5 (04) :252-260
[10]   PID and State Feedback Controllers Using DNA Strand Displacement Reactions [J].
Paulino, Nuno M. G. ;
Foo, Mathias ;
Kim, Jongmin ;
Bates, Declan G. .
IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04) :805-810