RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment

被引:16
|
作者
Chang, Zhanyuan [1 ]
Wu, Honglin [1 ]
Sun, Yunlong [2 ]
Li, Chuanjiang [1 ]
机构
[1] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
[2] China North Vehicle Res Inst, Beijing 100072, Peoples R China
关键词
visual SLAM; LK optical flow; object detection; epipolar geometric constraints; Yolov4-Tiny;
D O I
10.3390/mi13020230
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
For a SLAM system operating in a dynamic indoor environment, its position estimation accuracy and visual odometer stability could be reduced because the system can be easily affected by moving obstacles. In this paper, a visual SLAM algorithm based on the Yolov4-Tiny network is proposed. Meanwhile, a dynamic feature point elimination strategy based on the traditional ORBSLAM is proposed. Besides this, to obtain semantic information, object detection is carried out when the feature points of the image are extracted. In addition, the epipolar geometry algorithm and the LK optical flow method are employed to detect dynamic objects. The dynamic feature points are removed in the tracking thread, and only the static feature points are used to estimate the position of the camera. The proposed method is evaluated on the TUM dataset. The experimental results show that, compared with ORB-SLAM2, our algorithm improves the camera position estimation accuracy by 93.35% in a highly dynamic environment. Additionally, the average time needed by our algorithm to process an image frame in the tracking thread is 21.49 ms, achieving real-time performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment
    Jianfeng Li
    Juan Dai
    Zhong Su
    Cui Zhu
    Journal of Intelligent & Robotic Systems, 2024, 110
  • [2] RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment
    Li, Jianfeng
    Dai, Juan
    Su, Zhong
    Zhu, Cui
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (01)
  • [3] Robust RGB-D SLAM for Dynamic Environments Based on YOLOv4
    Rong, Hanxiao
    Ramirez-Serrano, Alex
    Guan, Lianwu
    Cong, Xiaodan
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [4] SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information
    Cong, Peichao
    Li, Jiaxing
    Liu, Junjie
    Xiao, Yixuan
    Zhang, Xin
    SENSORS, 2024, 24 (07)
  • [5] YOLOv4-tiny-based robust RGB-D SLAM approach with point and surface feature fusion in complex indoor environments
    Chang, Zhanyuan
    Wu, Honglin
    Li, Chuanjiang
    JOURNAL OF FIELD ROBOTICS, 2023, 40 (03) : 521 - 534
  • [6] RGB-D Sensor Based Mobile Robot SLAM in Indoor Environment
    Lyu Qiang
    Liu Feng
    Wang Xiaolong
    Wang Guosheng
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 3848 - 3852
  • [7] DRSO-SLAM: A Dynamic RGB-D SLAM Algorithm for Indoor Dynamic Scenes
    Yu, Naigong
    Gan, Mengzhe
    Yu, Hejie
    Yang, Kang
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1052 - 1058
  • [8] RGB-D SLAM Method Based on Enhanced Segmentation in Dynamic Environment
    Wang H.
    Lu D.
    Fang B.
    Jiqiren/Robot, 2022, 44 (04): : 418 - 430
  • [9] Optimized visual inertial SLAM for complex indoor dynamic scenes using RGB-D camera
    Chen, Jiawei
    Zhang, Wenchao
    Wei, Dongyan
    Liu, Xiaozhou
    MEASUREMENT, 2025, 245
  • [10] Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal
    Chenxin Liu
    Jiahu Qin
    Shuai Wang
    Lei Yu
    Yaonan Wang
    Science China Information Sciences, 2022, 65