Performance Assessment of a Planing Hull Using the Smoothed Particle Hydrodynamics Method

被引:30
作者
Tagliafierro, Bonaventura [1 ]
Mancini, Simone [2 ]
Ropero-Giralda, Pablo [3 ]
Dominguez, Jose M. [3 ]
Crespo, Alejandro J. C. [3 ]
Viccione, Giacomo [4 ]
机构
[1] Univ Salerno, Dept Civil Engn, I-84084 Fisciano, Italy
[2] FORCE Technol, Dept Hydro & Aerodynam, DK-2800 Lyngby, Denmark
[3] Univ Vigo, CIM UVIGO, Environm Phys Lab EPhysLab, Orense 32004, Spain
[4] Univ Salerno, Environm & Maritime Hydraul Lab LIDAM, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
关键词
DualSPHysics; Smoothed Particle Hydrodynamics; planing hull; high-speed craft; CFD simulations; main spray; whisker spray; SPH; WAVES; FLOW; DUALSPHYSICS; SIMULATIONS; ALGORITHMS; BOUNDARIES; CONVERTER; SOLVER;
D O I
10.3390/jmse9030244
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Computational Fluid Dynamics simulations of planing hulls are generally considered less reliable than simulations of displacement hulls. This is due to the flow complexity around planing hulls, especially in the bow region, where the sprays are formed. The recent and constant increasing of computational capabilities allows simulating planing hull features, with more accurate turbulence models and advanced meshing procedures. However, mesh-based approaches based on the finite volume methods have shown to be limited in capturing all the phenomena around a planing hull. As such, the focus of this study is on evaluating the ability of the Smoothed Particle Hydrodynamics mesh-less method to numerically solve the 3-D flow around a planing hull and simulate more accurately the spray structures, which is a rather challenging task to be performed with mesh-based tools. A novel application of the DualSPHysics code for simulating a planing hull resistance test has been proposed and applied to the parent hull of the Naples warped planing hull Systematic Series. The drag and the running attitudes (heave and dynamic trim angle) are computed for a wide range of Froude's numbers and discussed concerning experimental values.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 72 条
[1]  
Altomare C., 2018, Computational Fluid Dynamics - Basic Instruments and Applications in Science, P73, DOI DOI 10.5772/INTECHOPEN.71362
[2]   SPHERA v.9.0.0: A Computational Fluid Dynamics research code, based on the Smoothed Particle Hydrodynamics mesh-less method [J].
Amicarelli A. ;
Manenti S. ;
Albano R. ;
Agate G. ;
Paggi M. ;
Longoni L. ;
Mirauda D. ;
Ziane L. ;
Viccione G. ;
Todeschini S. ;
Sole A. ;
Baldini L.M. ;
Brambilla D. ;
Papini M. ;
Khellaf M.C. ;
Tagliafierro B. ;
Sarno L. ;
Pirovano G. .
Computer Physics Communications, 2020, 250
[3]   Numerical diffusive terms in weakly-compressible SPH schemes [J].
Antuono, M. ;
Colagrossi, A. ;
Marrone, S. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (12) :2570-2580
[4]   Free-surface flows solved by means of SPH schemes with numerical diffusive terms [J].
Antuono, M. ;
Colagrossi, A. ;
Marrone, S. ;
Molteni, D. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :532-549
[5]   Resistance assessment of warped hullform [J].
Begovic, E. ;
Bertorello, C. .
OCEAN ENGINEERING, 2012, 56 :28-42
[6]   A Validation of Symmetric 2D [J].
Bilandi, Rasul Niazmand ;
Mancini, Simone ;
Vitiello, Luigi ;
Miranda, Salvatore ;
De Carlini, Maria .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2018, 6 (04)
[7]  
Blount D.L., 2014, PERFORMANCE DESIGN H, V1st ed.
[8]   A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints [J].
Brito, M. ;
Canelas, R. B. ;
Garcia-Feal, O. ;
Dominguez, J. M. ;
Crespo, A. J. C. ;
Ferreira, R. M. L. ;
Neves, M. G. ;
Teixeira, L. .
RENEWABLE ENERGY, 2020, 146 :2024-2043
[9]  
Brizzolara S., 2008, P 8 WORLD C COMP MEC
[10]  
Campbell J., 2010, P W FROUD C ADV THEO, P131