Basis Function Matrix-Based Flexible Coefficient Autoregressive Models: A Framework for Time Series and Nonlinear System Modeling

被引:36
作者
Chen, Guang-Yong [1 ,2 ,3 ]
Gan, Min [1 ,2 ,3 ]
Chen, C. L. Philip [4 ,5 ]
Li, Han-Xiong [6 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou 350116, Peoples R China
[3] Minist Educ, Key Lab Spatial Data Min & Informat Sharing, Fuzhou 350116, Peoples R China
[4] Univ Macau, Fac Sci & Technol, Macau 99999, Peoples R China
[5] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100080, Peoples R China
[6] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
关键词
Model building; nonlinear least squares (NLLS); parameter estimation; system modeling; time series;
D O I
10.1109/TCYB.2019.2900469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose, in this paper, a framework for time series and nonlinear system modeling, called the basis function matrix-based flexible coefficient autoregressive (BFM-FCAR) model. It has very flexible nonlinear structure. We show that many famous nonlinear time series models can be derived under this framework by choosing the proper basis function matrices. Some probabilistic properties (the conditions of geometrical ergodicity) of the BFM-FCAR model are investigated. Taking advantage of the model structure, we present an efficient parameter estimation algorithm for the proposed framework by using the variable projection method. Finally, we show how new models are generated from the proposed framework.
引用
收藏
页码:614 / 623
页数:10
相关论文
共 54 条
[1]   State-dependent parameter modelling and identification of stochastic non-linear sampled-data systems [J].
Akesson, Bernt M. ;
Toivonen, Hannu T. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (08) :877-886
[2]  
An HZ, 1996, STAT SINICA, V6, P943
[3]  
[Anonymous], 1998, THESIS STANFORD U ST
[4]   Estimating nuisance parameters in inverse problems [J].
Aravkin, Aleksandr Y. ;
van Leeuwen, Tristan .
INVERSE PROBLEMS, 2012, 28 (11)
[5]   Equivalences Between Neural-Autoregressive Time Series Models and Fuzzy Systems [J].
Aznarte, Jose Luis ;
Manuel Benitez, Jose .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (09) :1434-1444
[6]  
Bell B.M., 2008, LECT NOTES COMPUTATI, P67, DOI DOI 10.1007/978-3-540-68942-37
[7]   ON THE USE OF THE DETERMINISTIC LYAPUNOV FUNCTION FOR THE ERGODICITY OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
CHAN, KS ;
TONG, H .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) :666-678
[8]   A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems [J].
Chen, Guang-Yong ;
Gan, Min ;
Chen, C. L. Philip ;
Li, Han-Xiong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) :526-537
[9]   Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications [J].
Chen, Guang-yong ;
Gan, Min ;
Chen, Guo-long .
INFORMATION SCIENCES, 2018, 438 :46-57
[10]   FUNCTIONAL-COEFFICIENT AUTOREGRESSIVE MODELS [J].
CHEN, R ;
TSAY, RS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :298-308