Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna

被引:1772
作者
Kinkhabwala, Anika [1 ]
Yu, Zongfu [2 ]
Fan, Shanhui [2 ]
Avlasevich, Yuri [3 ]
Muellen, Klaus [3 ]
Moerner, W. E. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
基金
美国国家科学基金会;
关键词
PLASMONIC NANOANTENNAS; OPTICAL ANTENNAS; EFFICIENCY; EMISSION; PROBE; DECAY;
D O I
10.1038/NPHOTON.2009.187
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Owing to the size mismatch between light and nanoscale objects such as single molecules, it is important to be able to control light-molecule interactions(1-4). Plasmonic nanoantennas create highly enhanced local fields when pumped resonantly, leading to increased Raman scattering(5), but whether fluorescence enhancement occurs depends upon a variety of factors. Although sharp metal tips(6) and colloids(7,8) can enhance fluorescence, the highly enhanced optical fields of lithographically fabricated bowtie nanoantennas(9) provide a structure that is more controllable and amenable to integration. Using gold bowties, we observe enhancements of a single molecule's fluorescence up to a factor of 1,340, ten times higher than reported previously(7,8,10-22). Electromagnetic simulations reveal that this is a result of greatly enhanced absorption and an increased radiative emission rate, leading to enhancement of the intrinsic quantum efficiency by an estimated factor of nine, despite additional non-radiative ohmic effects. Bowtie nanoantennas thus show great potential for high-contrast selection of single nanoemitters.
引用
收藏
页码:654 / 657
页数:4
相关论文
共 30 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Enhanced localized fluorescence in plasmonic nanoantennae [J].
Bakker, Reuben M. ;
Yuan, Hsiao-Kuan ;
Liu, Zhengtong ;
Drachev, Vladimir P. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. ;
Pedersen, Rasmus H. ;
Gresillon, Samuel ;
Boltasseva, Alexandra .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[3]   Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches [J].
Bek, Alpan ;
Jansen, Reiner ;
Ringler, Moritz ;
Mayilo, Sergiy ;
Klar, Thomas A. ;
Feldmann, Jochen .
NANO LETTERS, 2008, 8 (02) :485-490
[4]   Surface plasmon-quantum dot coupling from arrays of nanoholes [J].
Brolo, AG ;
Kwok, SC ;
Cooper, MD ;
Moffitt, MG ;
Wang, CW ;
Gordon, R ;
Riordon, J ;
Kavanagh, KL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (16) :8307-8313
[5]  
Chance RR, 1978, Adv. Chem. Phys., V37, P1, DOI DOI 10.1002/9780470142561.CH1
[6]   Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles [J].
Chen, Yeechi ;
Munechika, Keiko ;
Ginger, David S. .
NANO LETTERS, 2007, 7 (03) :690-696
[7]  
Edwards D.F., 1985, Handbook of optical constants of solids
[8]   Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy [J].
Farahani, Javad N. ;
Eisler, Hans-Juergen ;
Pohl, Dieter W. ;
Pavius, Michael ;
Flueckiger, Philippe ;
Gasser, Philippe ;
Hecht, Bert .
NANOTECHNOLOGY, 2007, 18 (12)
[9]   Single quantum dot coupled to a scanning optical antenna: A tunable superemitter [J].
Farahani, JN ;
Pohl, DW ;
Eisler, HJ ;
Hecht, B .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[10]   Engineering the optical response of plasmonic nanoantennas [J].
Fischer, Holger ;
Martin, Olivier J. F. .
OPTICS EXPRESS, 2008, 16 (12) :9144-9154