QTL-BSA: A Bulked Segregant Analysis and Visualization Pipeline for QTL-seq

被引:16
作者
Wu, Sanling [1 ]
Qiu, Jie [2 ,3 ]
Gao, Qikang [1 ]
机构
[1] Zhejiang Univ, Anal Ctr Agrobiol & Environm Sci, Fac Agr Life & Environm Sci, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Agron, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, James D Watson Inst Genome Sci, Hangzhou, Zhejiang, Peoples R China
关键词
Quantitative trait loci; QTL-seq; Bioinformatics tools; QUANTITATIVE TRAIT LOCI; ADVANCED BACKCROSS POPULATION; MORPHOLOGICAL TRAITS; YIELD COMPONENTS; RICE; GENE; IDENTIFICATION; MAIZE; DNA; RESISTANCE;
D O I
10.1007/s12539-019-00344-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the application of Whole Genome Sequencing (WGS) on plants has generated sufficient data for the identification of trait-associated genomic loci or genes. A high-throughput genome-assisted QTL-seq strategy, combined with bulked-segregant analysis and WGS of two bulked populations from a segregating progeny with opposite phenotypic trait values, has gained increasing popularities in research community. However, there is no publicly available user friendly software for the identification and visualization. Hence, we developed a tool named QTL-BSA (QTL-bulked segregant analysis and visualization pipeline), which could facilitate the rapid identification and visualization of candidate QTLs from QTL-seq. As a proof-of-concept study, we have applied the tool for the rapid discovery and the identification of genes related with the partial blast resistance in rice. Genomic region of the major QTL identified on chromosome 6, is located between 1.52 and 4.32 Mb, which is consistent with previous studies (2.39-4.39 Mb). We also derived the gene and QTLs functional annotation of this region. QTL-BSA offers a comprehensive solution to facilitate a wide range of programming and visualization tasks in QTL-seq analysis, is expected to be used widely by the research community.
引用
收藏
页码:730 / 737
页数:8
相关论文
共 47 条
[1]   Genome sequencing reveals agronomically important loci in rice using MutMap [J].
Abe, Akira ;
Kosugi, Shunichi ;
Yoshida, Kentaro ;
Natsume, Satoshi ;
Takagi, Hiroki ;
Kanzaki, Hiroyuki ;
Matsumura, Hideo ;
Yoshida, Kakoto ;
Mitsuoka, Chikako ;
Tamiru, Muluneh ;
Innan, Hideki ;
Cano, Liliana ;
Kamoun, Sophien ;
Terauchi, Ryohei .
NATURE BIOTECHNOLOGY, 2012, 30 (02) :174-178
[2]   Cytokinin oxidase regulates rice grain production [J].
Ashikari, M ;
Sakakibara, H ;
Lin, SY ;
Yamamoto, T ;
Takashi, T ;
Nishimura, A ;
Angeles, ER ;
Qian, Q ;
Kitano, H ;
Matsuoka, M .
SCIENCE, 2005, 309 (5735) :741-745
[3]   Identification, isolation and pyramiding of quantitative trait loci for rice breeding [J].
Ashikari, Motoyuki ;
Matsuoka, Makoto .
TRENDS IN PLANT SCIENCE, 2006, 11 (07) :344-350
[4]   Characterization of WRKY co-regulatory networks in rice and Arabidopsis [J].
Berri, Stefano ;
Abbruscato, Pamela ;
Faivre-Rampant, Odile ;
Brasileiro, Ana C. M. ;
Fumasoni, Irene ;
Satoh, Kouji ;
Kikuchi, Shoshi ;
Mizzi, Luca ;
Morandini, Piero ;
Pe, Mario Enrico ;
Piffanelli, Pietro .
BMC PLANT BIOLOGY, 2009, 9
[5]   Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars [J].
Breseghello, F ;
Sorrells, ME .
GENETICS, 2006, 172 (02) :1165-1177
[6]   Mapping genes for double podding and other morphological traits in chickpea [J].
Cho, SH ;
Kumar, J ;
Shultz, JL ;
Anupama, K ;
Tefera, F ;
Muehlbauer, FJ .
EUPHYTICA, 2002, 128 (02) :285-292
[7]   Genetic analysis of agronomic traits in a wide cross of chickpea [J].
Cobos, M. J. ;
Winter, P. ;
Kharrat, M. ;
Cubero, J. I. ;
Gil, J. ;
Milian, T. ;
Rubio, J. .
FIELD CROPS RESEARCH, 2009, 111 (1-2) :130-136
[8]  
DAMERVAL C, 1994, GENETICS, V137, P289
[9]   Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea [J].
Das, Shouvik ;
Upadhyaya, Hari D. ;
Bajaj, Deepak ;
Kujur, Alice ;
Badoni, Saurabh ;
Laxmi ;
Kumar, Vinod ;
Tripathi, Shailesh ;
Gowda, C. L. Laxmipathi ;
Sharma, Shivali ;
Singh, Sube ;
Tyagi, Akhilesh K. ;
Parida, Swarup K. .
DNA RESEARCH, 2015, 22 (03) :193-203
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+