Elliptic gradient estimates for a nonlinear f-heat equation on weighted manifolds with evolving metrics and potentials

被引:8
作者
Abolarinwa, Abimbola [1 ]
Taheri, Ali [2 ]
机构
[1] Univ Lagos, Dept Math, Akoka Yaba, Lagos State, Nigeria
[2] Univ Sussex, Sch Math & Phys Sci, Brighton, E Sussex, England
关键词
Gradient estimates; Perelman-Ricci flow; Weighted manifolds; Heat kernel; Logarithmic Sobolev inequalities; Maximum principle;
D O I
10.1016/j.chaos.2020.110329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop local elliptic gradient estimates for a basic nonlinear f-heat equation with a logarithmic power nonlinearity and establish pointwise upper bounds on the weighted heat kernel, all in the context of weighted manifolds, where the metric and potential evolve under a Perelman-Ricci type flow. For the heat bounds use is made of entropy monotonicity arguments and ultracontractivity estimates with the bounds expressed in terms of the optimal constant in the logarithmic Sobolev inequality. Some interesting consequences of these estimates are presented and discussed. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 36 条
[3]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[4]  
Bakry D., LECT NOTES MATH, P1123
[5]  
Bakry D, 2012, SERIES COMPREHENSIVE, P348
[6]   A Liouville-Type Theorem for Smooth Metric Measure Spaces [J].
Brighton, Kevin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :562-570
[7]  
Chavel I., 1984, EIGENVALUES RIEMANNI, pxiv+362 pp
[8]  
Chow B., 2006, GRADUATE STUDIES MAT, V77
[9]  
Grigor'yan A., 2013, HEAT KERNEL ANAL MAN
[10]  
Hamilton R, 1993, COMMUN ANAL GEOM, P113