On Teichmuller space of circle diffeomorphisms with Holder continuous derivative

被引:1
作者
Tang, Shuan [1 ]
Wu, Pengcheng [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Universal Teichmuller space; Diffeomorphism; Holder continuous derivative; Logarithmic derivative; pre-Bers projection;
D O I
10.1007/s13324-021-00502-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Matsuzaki [M1] introduced the Teichmuller space T-0(alpha) of diffeomorphisms of the unit circle with Holder continuous derivatives and investigated its Schwarzian derivative model. This paper deals with the pre-Schwarzian derivative model T-0(alpha)(1) of the Teichmuller space T-0(alpha). It is shown that T-0(alpha)(1) is a connected open subset of B-0(alpha)(Delta) and the pre-Bers projection is a holomorphic split submersion in T-0(alpha).
引用
收藏
页数:14
相关论文
共 43 条
[1]   RIEMANNS MAPPING THEOREM FOR VARIABLE METRICS [J].
AHLFORS, L ;
BERS, L .
ANNALS OF MATHEMATICS, 1960, 72 (02) :385-404
[2]  
Ahlfors L., 2006, LECT QUASICONFORMAL
[3]   QUASICONFORMAL REFLECTIONS [J].
AHLFORS, LV .
ACTA MATHEMATICA, 1963, 109 (3-4) :291-301
[4]  
Anderson J.M., 1998, COMPLEX VAR, V37, P161
[5]   QUASI-CONFORMAL SELF-MAPPINGS WITH SMOOTH BOUNDARY-VALUES [J].
ANDERSON, JM ;
HINKKANEN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :549-556
[6]   TEICHMULLER-SPACES AND BMOA [J].
ASTALA, K ;
ZINSMEISTER, M .
MATHEMATISCHE ANNALEN, 1991, 289 (04) :613-625
[7]   INJECTIVITY, THE BMO NORM AND THE UNIVERSAL TEICHMULLER SPACE [J].
ASTALA, K ;
GEHRING, FW .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 :16-57
[8]   LOWNER DIFFERENTIAL EQUATIONS AND SCHLICHT FUNCTIONS [J].
BECKER, J .
MATHEMATISCHE ANNALEN, 1973, 202 (04) :321-335
[9]  
Becker J., 1980, P NATO ADV STUDY I, P3777
[10]   A NON-STANDARD INTEGRAL EQUATION WITH APPLICATIONS TO QUASICONFORMAL MAPPINGS [J].
BERS, L .
ACTA MATHEMATICA UPPSALA, 1966, 116 (1-2) :113-&