Observability and unique continuation of the adjoint of a linearized simplified compressible fluid-structure model in a 2d channel

被引:5
作者
Mitra, Sourav [1 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
关键词
Observability; unique continuation; adjoint; compressible Navier-Stokes; damped beam; fluid-structure; Carleman estimate;
D O I
10.1051/cocv/2020065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a compressible fluid structure interaction model in a 2D channel with a simplified expression of the net force acting on the structure appearing at the fluid boundary. Concerning the structure we will consider a damped Euler-Bernoulli beam located on a portion of the boundary. In the present article we establish an observability inequality for the adjoint of the linearized fluid structure interaction problem under consideration which in principle is equivalent with the null controllability of the linearized system. As a corollary of the derived observability inequality we also obtain a unique continuation property for the adjoint problem.
引用
收藏
页数:51
相关论文
共 42 条
  • [1] Albano P., 2000, ELECTRON J DIFFER EQ, P1
  • [2] Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations
    Badra, Mehdi
    Ervedoza, Sylvain
    Guerrero, Sergio
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 529 - 574
  • [3] Bensoussan A., 2007, Representation and Control of Infinite Dimensional Systems. Systems Control: Foundations Applications, V2nd
  • [4] Local null controllability of a fluid-solid interaction problem in dimension 3
    Boulakia, M.
    Guerrero, S.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 825 - 856
  • [5] Local null controllability of a two-dimensional fluid-structure interaction problem
    Boulakia, Muriel
    Osses, Axel
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (01) : 1 - 42
  • [6] Boyer F., 2013, APPL MATH SCI, V183
  • [7] On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions
    Chapouly, Marianne
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (07) : 2094 - 2123
  • [8] Null controllability of a system of viscoelasticity with a moving control
    Chaves-Silva, Felipe W.
    Rosier, Lionel
    Zuazua, Enrique
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (02): : 198 - 222
  • [9] PROOF OF EXTENSIONS OF 2 CONJECTURES ON STRUCTURAL DAMPING FOR ELASTIC-SYSTEMS
    CHEN, SP
    TRIGGIANI, R
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (01) : 15 - 55
  • [10] CONTROLLABILITY AND STABILIZABILITY OF THE LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM IN ONE DIMENSION
    Chowdhury, S.
    Ramaswamy, M.
    Raymond, J. -P.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) : 2959 - 2987