Finite difference approximate solutions for the Cahn-Hilliard equation

被引:30
|
作者
Khiari, N.
Achouri, T.
Ben Mohamed, M. L.
Omrani, K. [1 ]
机构
[1] Inst Super Sci Appl & Technol Sousse, Sousse 4003, Ibn Khaldoun, Tunisia
[2] Fac Sci Monastir, Monastir 5000, Tunisia
关键词
Cahn-Hilliard equation; difference scheme; existence; uniqueness; convergence; linearization;
D O I
10.1002/num.20189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we analyze a Crank-Nicolson-type finite difference scheme for the nonlinear evolutionary Cahn-Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second-order convergent. Finally a new difference method possess a Lyapunov function is presented. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 50 条
  • [1] A class of stable and conservative finite difference schemes for the Cahn-Hilliard equation
    Ting-chun Wang
    Li-mei Zhao
    Bo-ling Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 863 - 878
  • [2] A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation
    Ting-chun WANG
    Li-mei ZHAO
    Bo-ling GUO
    ActaMathematicaeApplicataeSinica, 2015, 31 (04) : 863 - 878
  • [3] A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation
    Wang, Ting-chun
    Zhao, Li-mei
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04): : 863 - 878
  • [4] An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation
    Ham, Seokjun
    Li, Yibao
    Jeong, Darae
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [5] Periodic solutions to the Cahn-Hilliard equation with constraint
    Wang, Yifu
    Zheng, Jiashan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (04) : 649 - 660
  • [6] ROTATIONALLY SYMMETRIC SOLUTIONS TO THE CAHN-HILLIARD EQUATION
    Hernandez, Alvaro
    Kowalczyk, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (02) : 801 - 827
  • [7] Periodic solutions for a Cahn-Hilliard type equation
    Yin, Li
    Li, Yinghua
    Huang, Rui
    Yin, Jingxue
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (1-2) : 11 - 18
  • [8] A Note on the Viscous Cahn-Hilliard Equation
    柯媛元
    尹景学
    NortheasternMathematicalJournal, 2004, (01) : 101 - 108
  • [9] Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation
    He, Li-ping
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (03) : 461 - 482
  • [10] An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation
    Xiao Li
    ZhongHua Qiao
    Hui Zhang
    Science China Mathematics, 2016, 59 : 1815 - 1834